• Title/Summary/Keyword: Evaporating

Search Result 458, Processing Time 0.034 seconds

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Growth and effect of thermal annealing for ZnIn2Se4 single crystalline thick film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2Se4 단결정 후막 성장과 열처리 효과)

  • Hong, Myung-Seuk;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.437-446
    • /
    • 2008
  • Single crystalline ${ZnIn_2}{Se_4}$ layers were grown on thoroughly etched semi-insulating GaAs (100) substrate at $400^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating ${ZnIn_2}{Se_4}$ source at $630^{\circ}C$. The crystalline structure of the single crystalline thick films was investigated by the photoluminescence (PL) and Double crystalline X-ray rocking curve (DCRC). The carrier density and mobility of ${ZnIn_2}{Se_4}$ single crystalline thick films measured from Hall effect by van der Pauw method are $9.41{\times}10^{16}cm^{-3}$ and $292cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ${ZnIn_2}{Se_4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=1.8622 eV-$(5.23{\times}10^{-4}eV/K)T^2$/(T+775.5 K). After the as-grown ${ZnIn_2}{Se_4}$ single crystalline thick films was annealed in Zn-, Se-, and In-atmospheres, the origin of point defects of ${ZnIn_2}{Se_4}$ single crystalline thick films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_{Se}$, $Zn_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted ${ZnIn_2}{Se_4}$ single crystalline thick films to an optical p-type. Also, we confirmed that In in ${ZnIn_2}{Se_4}$/GaAs did not form the native defects because In in ${ZnIn_2}{Se_4}$ single crystalline thick films existed in the form of stable bonds.

Performance Comparison of Fin-Tube Type Evaporator using R134a and R1234yf under the Frost Condition (착상조건에서 R134a와 R1234yf를 적용한 핀-관 형태의 증발기 성능 비교)

  • Shin, Yunchan;Kim, Jinhyun;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5795-5801
    • /
    • 2015
  • The low temperature distribution of the refrigerated and frozen food has been increased gradually. Refrigeration industry is using R134a refrigerant, which GWP is 1300. R1234yf is an alternative refrigerant of R134a because GWP of R1234yf refrigerant is just 4. Evaporator used in refrigeration truck refrigeration system is operated on low temperature condition. Accordingly, evaporator is formed frost and the formation of frost is rapidly decreased performance of evaporator. In this study, the performance of evaporator using R134a and R1234yf refrigerant was analyzed with operating conditions under frost condition. As a result, the performance of R134a evaporator according to air inlet temperature, relative humidity and evaporating temperature was more sensitive than R1234yf evaporator. Besides, the frost growth of R134a evaporator is steeper than that of R1234yf one.

Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성)

  • Hong, Kwang-Joon;Bang, Jin-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and temperature dependence of energy band gap for $CuGaSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuGaSe_2$ 단결정 박막의 성장과 에너지 밴드갭의 온도 의존성)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.97-98
    • /
    • 2007
  • A stoichiometric. mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}$ and $11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $4.87{\times}10^{17}\;cm^{-3}$ and $129\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;335\;K)$.

  • PDF

Growth and Opoelectrical property for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Yun, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.122-123
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.9501 eV - $(8.79{\times}10^{-4}\;eV/K)T^2$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{1^-}$exciton peaks for n=1.

  • PDF

Photocurrent properties for $CdGa_2Se_4$ single crystal thin film grown by using hot wall epitaxy(HWE) method (Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 광전류 연구)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$ prepared from horizontal electric furnace. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$, obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - $(7.721{\times}10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy$({\Delta}cr)$ and the spin-orbit splitting energy$({\Delta}so)$ for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11^-}$ exciton peaks.

  • PDF

A Study on the Characteristics of Se/Zns Thin Film Light Amplifiers (Se/Zns 박막 광증폭기의 특성에 관한 연구)

  • Park, Gye-Choon;Im, Young-Sham;Lee, JIn;Chung, Hae-Duck;Gu, Hal-Bon;Kim, Jong-Uk;Jeong, In-Seong;Jeong, Woon-Jo;Lee, Ki-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.307-310
    • /
    • 1999
  • Using Se as a photoconductive element and ZnS as a luminescent element, a Se/ZnS thin film device for light amplifier applications was fabricated and its characteristics were investigated. The Se/ZnS thin film light amplifier was fabricated by evaporating the ZnS thin film on an ITO(Indium Tin Oxide) glass and the Se thin film on the ZnS thin film in sequence. The results of the characteristics investigation are summarized as follows: (1) When the frequency of an excitation voltage was increased, both the brightness response and the brightness saturation of the Se/ZnS thin film light amplifier began to start at a higher light input. (2) The gain of the Se/ZnS thin film light amplifier was dependent upon the amplitude and the frequency of the excitation voltage as well as an external light input. (3) When the Se/ZnS thin film light amplifier was excited by a direct current of a constant voltage, the frequency of the output brightness was\\`equal to the frequency of the input light applied. When the light amplifier was excited by a sinusoidal voltage of 60 Hz, the frequency of the output brightness was 120 Hz.

  • PDF

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.