• Title/Summary/Keyword: Evaluation metrics

Search Result 512, Processing Time 0.027 seconds

Evaluation of the Use of Color Distribution Image Search in Various Setup (칼라 분포정보를 이용한 성능적 이미지 검색 평가)

  • Lee, Yong-Hwan;Ahn, Hyo-Chang;Rhee, Sang-Burm;Park, Jin-Yang
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.537-544
    • /
    • 2006
  • Image Search is one of the most exciting and fast growing research areas in the filed of multimedia technology. This paper conducts an empirical evaluation of color descriptor that uses the information of color distribution in color images, which is the most basic element for image search. With the experimental results, we observe that in the top 10% of precision, HSV, Daubechies 9/7 and 2 level decomposition have little better than others. Also histogram quadratic metrics outperform the Minkowski form distance metrics in similarity measurements, but spend more than 20 in computational times.

  • PDF

The evaluation of Sound Power Level and development of index for Sound Quality of Vacuum Cleaner according to performances of Sound Absorbtion Materials (흡음재 성능에 따른 진공청소기의 음향파워 평가 및 음질인덱스 개발)

  • Kwon, Hyuk-Je;Lee, Sang-Kwon;Gu, Jin-Hoi;Lee, Hyun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.112-120
    • /
    • 2008
  • Today, the use of a vacuum cleaner gave us the higher quality of life than past time, but sometimes made us w1comfortable in the house because of the specific noise that is annoying. So we need to study how sound absorbtion materials affect sound power level and sound quality with sound metrics. In this paper, we will measure and calculate sound power level for vacuum cleaner and analyze characteristics of the noise for 10 Signals according to materials positioned in vacuum cleaner. The multiple regression analysis can estimate the nonlinear characteristics of relation between subjective evaluation and sound metrics. So we will develop sound quality index for vacuum sound.

  • PDF

Psychoacoustical Analysis and Application of Electroencephalography(EEG) to the Sound Quality Analysis for Acceleration Sound of a Passenger Car (자동차 가속음질에 대한 심리음향적 분석과 뇌파응용 음질 평가)

  • Lee, Seung-Min;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.258-266
    • /
    • 2013
  • This paper presents the correlation between psychological and physiological acoustics for the automotive acceleration sound. The research purpose of this paper is to evaluate the sound quality of acceleration sound of a passenger car based EEG signal. The previous method for the objective evaluation of sound quality is to use sound metrics based on psychological acoustics. This method uses not only psychological acoustics but also physiological acoustics. For this work, the sounds of 7 premium passenger cars are recorded and evaluated subjectively by 33 people. The correlation between the subjective rating and sound metrics is calculated based on physiological acoustics. Finally the correlation between the subjective rating and the EEG signal measured on the brain is also calculated. Throughout these results the new evaluation system for the sound quality on the automotive acceleration sound of a passenger car has been developed based on bio-signal.

Modeling and Performance Evaluation of AP Deployment Schemes for Indoor Location-Awareness (실내 환경에서 위치 인식율을 고려한 AP 배치 기법의 모델링 및 성능 평가)

  • Kim, Taehoon;Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.847-856
    • /
    • 2013
  • This paper presents an AP placement technique considering indoor location-awareness and examines its performance. The proposed AP placement technique is addressed from three performance metrics: location-awareness and AP-based wireless network performance as well as its cost. The proposed AP placement technique consists of meta-heuristic algorithms that yield a near optimal AP configuration for given performance metrics, and deterministic algorithms that improve the fast convergence of the near optimal AP configuration. The performance of the AP placement technique presented in this paper is measured under the environments simulating indoor space, and numerical results obtained by experimental evaluation yield the fast convergence of a near-optimal solution to a given performance metric.

The Research for Predicting Customer's Evaluation of Sound Quality for a New Vehicle (신 개발 차종에 대한 소비자 음질평가 예측에 관한 연구)

  • Lee, Sang-Kwon;Jo, Byoung-Ok;Park, Dong-Chul;Lee, Min-Sub;Jung, Seung-Gyoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1437-1442
    • /
    • 2006
  • The international competition in car markets has continuously required the research about the sound quality of a car. The domestic carmakers have also invested a lot of money for the research and development of interior sound quality of passenger cars. Therefore, the aim of this research is to predict the customer's evaluation of a new vehicle. There are two major research works to achieve this goal in this research. The first one is to search questionnaires about the sound quality, which customers prefer, to identify the relationship between these questionnaires and sound metrics that is a psychoacoustics parameters, and to development sound indexes for the questionnaires. All tests for this work is proceed on the road test during acceleration. The second one is to balance the sound component (engine noise, booming noise, road noise and wind noise) of a passenger. This wok will be tested on the constant speed. All of research results will be contributed to the development of brand sound quality of a new passenger car.

  • PDF

A Study on Prediction of Road Freezing in Jeju (제주지역 도로결빙 예측에 관한 연구)

  • Lee, Young-Mi;Oh, Sang-Yul;Lee, Soo-Jeong
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.531-541
    • /
    • 2018
  • Road freezing caused by snowfall during wintertime causes traffic congestion and many accidents. To prevent such problems, we developed, in this study, a system to predict road freezing based on weather forecast data and the freezing generation modules. The weather forecast data were obtained from a high-resolution model with 1 km resolution for Jeju Island from 00:00 KST on December 1, 2017, to 23:00 KST on February 28, 2018. The results of the weather forecast data show that index of agreement (IOA) temperature was higher than 0.85 at all points, and that for wind speed was higher than 0.7 except in Seogwipo city. In order to evaluate the results of the freezing predictions, we used model evaluation metrics obtained from a confusion matrix. These metrics revealed that, the Imacho module showed good performance in precision and accuracy and that the Karlsson module showed good performance in specificity and FP rate. In particular, Cohen's kappa value was shown to be excellent for both modules, demonstrating that the algorithm is reliable. The superiority of both the modules shows that the new system can prevent traffic problems related to road freezing in the Jeju area during wintertime.

Deriving Robust Reservoir Operation Policy under Changing Climate: Use of Robust Optimiziation with Stochastic Dynamic Programming

  • Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.171-171
    • /
    • 2020
  • Decision making strategies should consider both adaptiveness and robustness in order to deal with two main characteristics of climate change: non-stationarity and deep uncertainty. Especially, robust strategies are different from traditional optimal strategies in the sense that they are satisfactory over a wider range of uncertainty and may act as a key when confronting climate change. In this study, a new framework named Robust Stochastic Dynamic Programming (R-SDP) is proposed, which couples previously developed robust optimization (RO) into the objective function and constraint of SDP. Two main approaches of RO, feasibility robustness and solution robustness, are considered in the optimization algorithm and consequently, three models to be tested are developed: conventional-SDP (CSDP), R-SDP-Feasibility (RSDP-F), and R-SDP-Solution (RSDP-S). The developed models were used to derive optimal monthly release rules in a single reservoir, and multiple simulations of the derived monthly policy under inflow scenarios with varying mean and standard deviations are undergone. Simulation results were then evaluated with a wide range of evaluation metrics from reliability, resiliency, vulnerability to additional robustness measures. Evaluation results were finally visualized with advanced visualization tools that are used in multi-objective robust decision making (MORDM) framework. As a result, RSDP-F and RSDP-S models yielded more risk averse, or conservative, results than the CSDP model, and a trade-off relationship between traditional and robustness metrics was discovered.

  • PDF

A Comparative Performance Analysis of Segmentation Models for Lumbar Key-points Extraction (요추 특징점 추출을 위한 영역 분할 모델의 성능 비교 분석)

  • Seunghee Yoo;Minho Choi ;Jun-Su Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.354-361
    • /
    • 2023
  • Most of spinal diseases are diagnosed based on the subjective judgment of a specialist, so numerous studies have been conducted to find objectivity by automating the diagnosis process using deep learning. In this paper, we propose a method that combines segmentation and feature extraction, which are frequently used techniques for diagnosing spinal diseases. Four models, U-Net, U-Net++, DeepLabv3+, and M-Net were trained and compared using 1000 X-ray images, and key-points were derived using Douglas-Peucker algorithms. For evaluation, Dice Similarity Coefficient(DSC), Intersection over Union(IoU), precision, recall, and area under precision-recall curve evaluation metrics were used and U-Net++ showed the best performance in all metrics with an average DSC of 0.9724. For the average Euclidean distance between estimated key-points and ground truth, U-Net was the best, followed by U-Net++. However the difference in average distance was about 0.1 pixels, which is not significant. The results suggest that it is possible to extract key-points based on segmentation and that it can be used to accurately diagnose various spinal diseases, including spondylolisthesis, with consistent criteria.

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.