• Title/Summary/Keyword: Evaluation Tool Model

Search Result 784, Processing Time 0.031 seconds

A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System (태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구)

  • Lee, Hu-Dong;Kim, Ki-Young;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Technologies for an MVDC(medium voltage direct current) distribution system are being considered as an effective alternative to overcome the interconnection delay issues of PV systems. However, the implementation of a DC distribution system might lead to economic problems because of the development of DC devices. Therefore, this paper deals with the scale of a PV plant based on its capacity and proposes hosting-capacity models for PV systems to establish a network to evaluate the feasibility of an MVDC distribution system. The proposed models can be classified as AC and DC distribution systems by the power-supply method. PV systems with hundreds of MW, dozens of MW, and a few MW can be categorized as large-scale, medium-scale, and small-scale models, respectively. This paper also performed modeling for an economic evaluation of MVDC distribution system by considering both the cost of AC and DC network construction, converter replacement, operation, etc. The profit was composed of the SMP and REC rate of a PV plant. A simulation for economic evaluation was done for the MVDC distribution system using the present worth and equal-principal costs repayment method. The results confirmed that the proposed model is a useful tool to evaluate economic issues of a DC distribution system.

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.

The Current Status and Challenges of Forest Landscape Models (산림 경관 모형의 현황과 과제)

  • Ko, Dongwook W.;Sung, Joo Han;Lee, Young Geun;Park, Chan Ryul
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Korea now boasts a vastly forested landscape resulting from a successful forest restoration projects carried out in the past several decades. However, Korea's forest now face new challenges, such as the rapidly increasing mature forests, climate change, and various novel forest disturbances with both natural and anthropogenic causes. Considering the extensive spatial and temporal scale of the forests and the challenges it face, it is necessary to utilize a tool that can properly tackle the issues with such nature. This brings our attention to Forest Landscape Models, which have been actively developed and used to improve our understanding of how forests respond to a variety of changes and to satisfy the society's demand on forests and its ecosystem services. A large variety of Forest Landscape Models exist, with a wide spectrum of algorithms, various selections of ecological processes they simulate, and the spatial and temporal scale they utilize, so that any researcher may find a model that fits one's use. However, it is important to properly understand the properties of such models so that the right model is used and the results are aptly interpreted. In this study, we describe and characterize the various Forest Landscape Models based on their historical roots, lineages, and development, ecological characteristics, and computational aspects, and discuss how they can be classified and what limits should be recognized to assist in model selection and utilization.

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Generating Sponsored Blog Texts through Fine-Tuning of Korean LLMs (한국어 언어모델 파인튜닝을 통한 협찬 블로그 텍스트 생성)

  • Bo Kyeong Kim;Jae Yeon Byun;Kyung-Ae Cha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • In this paper, we fine-tuned KoAlpaca, a large-scale Korean language model, and implemented a blog text generation system utilizing it. Blogs on social media platforms are widely used as a marketing tool for businesses. We constructed training data of positive reviews through emotion analysis and refinement of collected sponsored blog texts and applied QLoRA for the lightweight training of KoAlpaca. QLoRA is a fine-tuning approach that significantly reduces the memory usage required for training, with experiments in an environment with a parameter size of 12.8B showing up to a 58.8% decrease in memory usage compared to LoRA. To evaluate the generative performance of the fine-tuned model, texts generated from 100 inputs not included in the training data produced on average more than twice the number of words compared to the pre-trained model, with texts of positive sentiment also appearing more than twice as often. In a survey conducted for qualitative evaluation of generative performance, responses indicated that the fine-tuned model's generated outputs were more relevant to the given topics on average 77.5% of the time. This demonstrates that the positive review generation language model for sponsored content in this paper can enhance the efficiency of time management for content creation and ensure consistent marketing effects. However, to reduce the generation of content that deviates from the category of positive reviews due to elements of the pre-trained model, we plan to proceed with fine-tuning using the augmentation of training data.

Development and Validation of the Korean Implementation Fidelity Checklist of Tier 1 School-Wide Positive Behavior Support (KIFC-T1) (한국형 학교차원 긍정적 행동지원 1차 실행충실도 척도(KIFC-T1)의 개발과 타당화)

  • Nam, Dong Mi;Chang, Eun Jin;Won, Sung-Doo;Cho Blair, Kwang-Sun;Song, Wonyoung
    • Korean Journal of School Psychology
    • /
    • v.17 no.3
    • /
    • pp.401-419
    • /
    • 2020
  • The purpose of this study was to validate the Korean Implementation Fidelity Checklist of Tier 1 School-Wide Positive Behavior Support (KIFC-T1) for use in the Korean educational system. Tier 1 support, which is universal supports, within a multi-tiered, school-wide positive behavior support (SWPBS) model, aims to provide support to and prevent problem behaviors among all students in a school. The initial KIFC-T1 consisted of 48 items and 11 factors and was developed based on a literature review. Its content was validated by experts. The validated KIFC-T1 was introduced to 185 special school teachers who had experience implementing SWPBS and who used the instrument to assess the degree to which their schools had implemented Tier 1 support. Based on their responses, the construct validity of the KIFC-T1 was examined using factor, item, and internal consistency reliability analyses. The concurrent validity of the tool was examined using the PBS Evaluation Tool, School Climate Questionnaire, School Discipline Practice Scale, and PBS Effectiveness Scale. The analyses revealed that KIFC-T1 had a stable five-factor structure with 35 items, had good reliability (Cronbach's α=.956, each factor's Cronbach's α=.834-.951), and its results were statistically significantly correlated with those of the PBS Evaluation Tool, School Discipline Practice Scale, and the PBS Effectiveness Scale. However the KIFC-T1's results were not statistically significantly correlated with the results of the School Climate Questionnaire. These results suggest that KIFC-T1 is a reliable and valid tool for assessing the fidelity of universal support implementations.

Development and Application of Landscape Diversity Evaluation Model on the Basis of Rural and Natural Area (농촌 및 자연지역의 경관 다양성 평가모형 개발 및 적용)

  • Ra, Jung-Hwa;Lee, Yong-Eun;Cho, Hyun-Ju;Ku, Ji-Na;Kwon, Oh-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.84-95
    • /
    • 2013
  • Recently, to prevent damage to the landscape, outstanding landscape areas have been designated in advance. In particular, as a fundamental way to evaluate landscape elements, landscape diversity is an important criterion to assess an area with a high conservative value. Therefore, the purpose of this study is to develop a quantitative evaluation model of landscape diversity based on landscape elements and to verify the model by applying it to the study sites. The assessment indicators derived from the literature analysis are topography, vegetation, land-use pattern, and unusual landscape. Topography diversity is subdivided into land undulation and land-form. Vegetation diversity is subdivided into plant community diversity and stratification diversity. To quantitatively analyse each indicator's diversity, SHDI was selected as the central metric. All of the quantitative measures were implemented by using the statistical tool, FRAGSTATS. Through the process of each indicator's standardization and summary, the final landscape diversity index was calculated. The results of the study are significant as it was the initial study of landscape diversity evaluation to seek applicability. However, the results of the Landscape Diversity Evaluation Model in this study based on 4 indicators synthetically demonstrate that more than one or two outstanding indicators can be underrated. Therefore, each 4 assessment indicator results should be considered individually. Furthermore, using the maximum value for each indicator's standardization reflects that it is necessary to analyse various examples to obtain higher objectivity later.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.