DOI QR코드

DOI QR Code

The Current Status and Challenges of Forest Landscape Models

산림 경관 모형의 현황과 과제

  • Ko, Dongwook W. (Department of Forest, Environment, and Systems, Kookmin University) ;
  • Sung, Joo Han (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Lee, Young Geun (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Park, Chan Ryul (Division of Forest Ecology, Korea Forest Research Institute)
  • 고동욱 (국민대학교 산림환경시스템학과) ;
  • 성주한 (국립산림과학원 산림생태연구과) ;
  • 이영근 (국립산림과학원 산림생태연구과) ;
  • 박찬열 (국립산림과학원 산림생태연구과)
  • Received : 2014.09.04
  • Accepted : 2014.12.29
  • Published : 2015.03.31

Abstract

Korea now boasts a vastly forested landscape resulting from a successful forest restoration projects carried out in the past several decades. However, Korea's forest now face new challenges, such as the rapidly increasing mature forests, climate change, and various novel forest disturbances with both natural and anthropogenic causes. Considering the extensive spatial and temporal scale of the forests and the challenges it face, it is necessary to utilize a tool that can properly tackle the issues with such nature. This brings our attention to Forest Landscape Models, which have been actively developed and used to improve our understanding of how forests respond to a variety of changes and to satisfy the society's demand on forests and its ecosystem services. A large variety of Forest Landscape Models exist, with a wide spectrum of algorithms, various selections of ecological processes they simulate, and the spatial and temporal scale they utilize, so that any researcher may find a model that fits one's use. However, it is important to properly understand the properties of such models so that the right model is used and the results are aptly interpreted. In this study, we describe and characterize the various Forest Landscape Models based on their historical roots, lineages, and development, ecological characteristics, and computational aspects, and discuss how they can be classified and what limits should be recognized to assist in model selection and utilization.

이 논문은 산림 경관 모형의 역사적 발전 양상과 특성, 그리고 이를 유형화하는 다양한 방식과 기준을 살펴보았다. 우리나라는 성공적인 조림 사업을 통해 대규모 산림 녹화의 성공적 수행이라는 성과를 올렸으나, 증가하는 성숙림과 기후변화의 대두, 그리고 다양한 산림 교란의 발생과 같은 새로운 도전에 직면하게 되었다. 이에 따라 넓은 면적과 높은 다양성을 지닌 산림이 향후 장기간에 걸쳐 어떤 변화를 맞이할 수 있으며, 어떤 관리가 산림의 다양한 가치와 생태계 서비스를 극대화시킬 수 있을 것인지에 대한 관심이 높아지고 있다. 산림 경관 모형은 이렇게 광범위한 시공간적 규모에서의 산림 변화와 관리의 문제에 효과적으로 대응하기 위한 접근 방식이며, 다양한 목적과 특성을 지닌 많은 종류의 모형이 활발히 개발되고 적용되어 왔다. 그런데 모형의 종류가 매우 다양할 뿐 아니라 모사하는 현상과 알고리즘, 모형의 특성 등의 변이가 매우 크기에 연구자들이 적절한 모형을 선택하는데 어려움이 있다. 따라서 현재 활발하게 활용되고 있는 다양한 모형의 특징을 정리하고 현재의 현황과 앞으로의 과제를 살펴봄으로써 적절한 모형의 선정과 적용, 해석에 도움이 되고자 하였다.

Keywords

References

  1. Acevedo, M.F., Urban, D.L., and Shugart, H.H. 1996. Models of forest dynamics based on roles of tree species. Ecological Modelling 87: 267-284. https://doi.org/10.1016/0304-3800(94)00208-8
  2. Akcakaya, H.R., Halley, J.M., and Inchausti, P. 2003. Population-level mechanisms for reddened spectra in ecological time series. Journal of Animal Ecology 72: 698-702. https://doi.org/10.1046/j.1365-2656.2003.00738.x
  3. Andrews, P.L. 1986. BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, part 1. USDA Forest Service, Intermountain Research Station, General Technical Report 164.
  4. Bachelet, D., Lenihan, J.M., Daly, C., Neilson, R.P., Ojima, D.S., and Parton, W.J. 2001. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. USDA Forest Service Pacific Northwest Research Station. General Technical Report 508.
  5. Baker, W.L. 1994. Restoration of landscape structure altered by fire suppression. Conservation Biology 8: 763-769. https://doi.org/10.1046/j.1523-1739.1994.08030763.x
  6. Baker, W.L. and Mladenoff, D.J. 1999. Spatial Modeling of Forest Landscape Change. pp. 333-349 in Progress and future directions in spatial modeling of forest landscapes (Mladenoff DJ, Baker WL, eds.). Cambridge University Press. Cambridge, UK.
  7. Bell, E.J. 1974. Markov Analysis of Land Use Change-Application of Stochastic Processes to Remotely Sensed Data. Socio-Economic Planning Sciences 8: 311-316. https://doi.org/10.1016/0038-0121(74)90034-2
  8. Beukema, S.J., Kurz, W.A., Pinkham, C.B., Milosheva, K., Frid, L. 2003. Vegetation Dynamics Development Tol User's Guide. Version 4.4. ESSA Technologies, Ltd., Vancouver, B.C.
  9. Bormann, F.H. and Likens, G.E. 1979. Pattern and process in a forested ecosystem: Pattern and process in a forested ecosystem: disturbance, development, and the steady state based on the Hubbard Brook ecosystem study. Springer-Verlag.
  10. Botkin, D.B., Janak, J.F., and Wallis, J.R. 1972. Some ecological consequences of a computer model of forest growth. Journal of Ecology 60: 849-872. https://doi.org/10.2307/2258570
  11. Bugmann, H.K. 1996. A simplified forest model to study species composition along climate gradients. Ecology: 2055-2074.
  12. Burnham, B.O. 1973. Markov intertemporal land use simulation model. Southern Journal of Agricultural Economics 5: 253-258.
  13. Chew, J.D., Stalling, C., and Moeller, K. 2004. Integrating knowledge for simulating vegetation change at landscape scales. Western Journal of Applied Forestry 19: 102-108.
  14. Ek, A.R. and Monserud, R.A. 1974. Announcement: Availability of a computer model for simulating growth and reproduction of forest stands of mixed species. Forest Science 20: 259-260.
  15. Finney, M.A. 2004. FARSITE: Fire Area Simulator-model development and evaluation. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Research Paper 4.
  16. Forman, R.T.T. and Godron, M. 1986. Landscape ecology. New York: Wiley.
  17. Gustafson, E., Zollner, P., Sturtevant, B., He, H., and Mladenoff, D. 2004. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landscape Ecology 19: 327-341. https://doi.org/10.1023/B:LAND.0000030431.12912.7f
  18. Gustafson, E.J. and Crow, T.R. 1998. Simulating spatial and temporal context of forest management using hypothetical landscapes. Environmental Management 22: 777-787. https://doi.org/10.1007/s002679900147
  19. Hargrove, W.W., Gardner, R., Turner, M., Romme, W., and Despain, D. 2000. Simulating fire patterns in heterogeneous landscapes. Ecological Modelling 135: 243-263. https://doi.org/10.1016/S0304-3800(00)00368-9
  20. He, H.S. 2008. Forest landscape models: Definitions, characterization, and classification. Forest Ecology and Management 254: 484-498. https://doi.org/10.1016/j.foreco.2007.08.022
  21. He, H.S. and Mladenoff, D.J. 1999a. The Effects of Seed Dispersal on the Simulation of Long-Term Forest Landscape Change. Ecosystems 2: 308-319. https://doi.org/10.1007/s100219900082
  22. He, H.S. and Mladenoff, D.J. 1999b. Spatially Explicit and Stochastic Simulation of Forest-Landscape Fire Disturbance and Succession. Ecology 80: 81-99. https://doi.org/10.1890/0012-9658(1999)080[0081:SEASSO]2.0.CO;2
  23. He, H.S., Shifley, S.R., Dijak, W., and Gustafson, E.J. 2003. Spatial simulation of forest fire and timber harvesting in Missouri Ozarks Highlands. In: Perera, A.H., Buse, L.J., Weber, M.G. (eds.) Emulating Natural Forest Landscape Disturbances: Concepts and Applications. New York, NY, USA: Columbia University Press.
  24. Hooper, D.U. and Vitousek, P.M. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 1302-1305. https://doi.org/10.1126/science.277.5330.1302
  25. Iverson, D.C. and Alston, R.M. 1986. The genesis of FORPLAN: A historical and analytical review of Forest Service planning models. USDA Forest Service. Intermountain Research Station. General Technical Report 214.
  26. Keane, R.E., Morgan, P., and Running, S.W. 1996. Fire-BGC: A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains. USDA Forest Service. Forest Service, Ogden, UT (United States). Intermountain Research Station. Research Paper 214.
  27. Keane, R.E., Parsons, R., and Hessburg, P. 2002. Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach. Ecological Modelling 151: 29-49. https://doi.org/10.1016/S0304-3800(01)00470-7
  28. Kimmins, J.P. 1997. Forest ecology: a foundation for sustainable management: Prentice-Hall Inc.
  29. Klenner, W., Kurz, W., and Beukema, S. 2000. Habitat patterns in forested landscapes: management practices and the uncertainty associated with natural disturbances. Computers and Electronics in Agriculture 27: 243-262. https://doi.org/10.1016/S0168-1699(00)00110-1
  30. Ko, S.Y., Sung, J.H., Chun, J.H., Lee, L.G., and Shin, M.Y. 2014. Predicting the Changes of Yearly Productive Area Distribution for Pinus densiflora in Korea Based on Climate Change Scenarios. Korean Journal of Agricultural and Forest Meteorology 16: 72-82. https://doi.org/10.5532/KJAFM.2014.16.1.72
  31. Kurz, W.A., Beukema, S.J., Klenner, W., Greenough, J., Robinson, D., Sharpe, A., and Webb, T. 2000. TELSA: the tool for exploratory landscape scenario analyses. Computers and Electronics in Agriculture 27: 227-242. https://doi.org/10.1016/S0168-1699(00)00109-5
  32. Lenihan, J.M., Daly, C., Bachelet, D., and Neilson, R.P. 1998. Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Science 72: 91-101.
  33. Lim, J.H., Shin, J.H., Lee, D.K., and Suh, S.J. 2006. Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea. Korean Journal of Agricultural and Forest Meteorology 8(3): 199-207.
  34. Maxwell, T. and Costanza, R. 1997. A language for modular spatio-temporal simulation. Ecological Modelling 103: 105-113. https://doi.org/10.1016/S0304-3800(97)00103-8
  35. Mladenoff, D.J. 2004. LANDIS and forest landscape models. Ecological Modelling 180: 7-19. https://doi.org/10.1016/j.ecolmodel.2004.03.016
  36. Mladenoff, D.J. and He, H.S. 1999. Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. in Spatial modeling of forest landscape change: approaches and applications. (Mladenoff, D.J., Baker, W.L, eds). Cambridge University Press, Cambridge, UK: 125-162.
  37. Neilson, R.P. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5: 362-385. https://doi.org/10.2307/1942028
  38. Pacala, S.W., Canham, C.D., and Silander, J.A.J. 1993. Forest models defined by field measurements: I. The design of a northeastern forest simulator. Canadian Journal of Forest Research 23: 1980-1988. https://doi.org/10.1139/x93-249
  39. Pastor, J. and Post, W. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2: 3-27. https://doi.org/10.1007/BF02186962
  40. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., and Klooster, S.A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles 7: 811-841. https://doi.org/10.1029/93GB02725
  41. Pretzsch, H., Grote, R., Reineking, B., Rotzer, T., and Seifert, S. 2008. Models for Forest Ecosystem Management: A European Perspective. Annals of Botany 101: 1065-1087.
  42. Roberts, D.W. 1996. Modelling Forest Dynamics With Vital Attributes and Fuzzy Systems Theory. Ecological Modelling 90: 161-173. https://doi.org/10.1016/0304-3800(95)00163-8
  43. Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station. Research Paper 115.
  44. Running, S.W. and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological modelling 42: 125-154. https://doi.org/10.1016/0304-3800(88)90112-3
  45. Rykiel Jr, E.J. 1996. Testing ecological models: the meaning of validation. Ecological Modelling 90: 229-244. https://doi.org/10.1016/0304-3800(95)00152-2
  46. Scheller, R.M. and Mladenoff, D.J. 2004. A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecological Modelling 180: 211-229. https://doi.org/10.1016/j.ecolmodel.2004.01.022
  47. Scheller, R.M. and Mladenoff, D.J. 2007. An ecological classification of forest landscape simulation models: Tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecology 22: 491-505. https://doi.org/10.1007/s10980-006-9048-4
  48. Schumacher, S. and Bugmann, H. 2006. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Global Change Biology 12: 1435-1450. https://doi.org/10.1111/j.1365-2486.2006.01188.x
  49. Seidl, R., Rammer, W., Scheller, R.M., and Spies, T.A. 2012. An individual-based process model to simulate landscapescale forest ecosystem dynamics. Ecological Modelling 231: 87-100. https://doi.org/10.1016/j.ecolmodel.2012.02.015
  50. Sequeira, R.A., Olson, R.L., and McKinion, J.M. 1997. Implementing generic, object-oriented models in biology. Ecological Modelling 94: 17-31. https://doi.org/10.1016/S0304-3800(96)01925-4
  51. Shin, J.Y., Won, M.S., Kim, K.H., and Shin, M.Y. 2013. Predicting the Effect of Climate Change on Forest Biomass by Different Ecoprovinces and Forest Types in Korea. Korean Journal of Agricultural and Forest Meteorology 15(3): 119-129. https://doi.org/10.5532/KJAFM.2013.15.3.119
  52. Shin, J.Y., Won, M.S., Kim, K.H., and Shin, M.Y. 2013. Predicting the Effect of Climate Change on Forest Biomass by Different Ecoprovinces and Forest Types in Korea. Korean Journal of Agricultural and Forest Meteorology 15(3): 119-129. https://doi.org/10.5532/KJAFM.2013.15.3.119
  53. Shugart, H.H. 1984. A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. New York: Springer-Verlag.
  54. Shugart, H.H. and West, D.C. 1980. Forest Succession Models. Bioscience 30: 308-313. https://doi.org/10.2307/1307854
  55. Stepehens, G.R. and Waggoner, P.E. 1970. The forest anticipated from 40 years of natural transition in mixed hardwoods. Bulletin of the Connecticut Agricultural Experiment Station 707. New Haven CT.
  56. Tak, K., Chun, Y., and Wood, P. 2007. The South Korean forest dilemma. International Forestry Review 9: 548-557. https://doi.org/10.1505/ifor.9.1.548
  57. Tebaldi, C. and Knutti, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365: 2053-2075. https://doi.org/10.1098/rsta.2007.2076
  58. Tischendorf, L. 2001. Can Landscape Indices Predict Ecological Processes Consistently? Landscape Ecology 16: 235-254. https://doi.org/10.1023/A:1011112719782
  59. Turner, M.G. 1989. Landscape Ecology: The effect of pattern on process. Annual review of ecological systems 20: 171-197. https://doi.org/10.1146/annurev.es.20.110189.001131
  60. Turner, M.G. 2005. Landscape Ecology in North America: Past, Present, and Future. Ecology 86: 1967-1974. https://doi.org/10.1890/04-0890
  61. Urban, D.L. 2005. Modeling ecological processes across scales. Ecology 86: 1996-2006. https://doi.org/10.1890/04-0918
  62. Urban, D.L. and Shugart, H.H. 1992. Individual-based models of forest succession. Plant Succession. Theory and Prediction. Chapman & Hall, London, UK: 249-292.
  63. Urban, D.L., Acevedo, M.F., and Garman, S.L. 1999. Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models. Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, UK: 70-98.
  64. Wimberly, M.C. 2002. Spatial simulation of historical landscape patterns in coastal forests of the Pacific Northwest. Canadian Journal of Forest Research 32: 1316-1328. https://doi.org/10.1139/x02-054
  65. With, K. 1997. The application of neutral landscape models in conservation biology. Conservation Biology 11: 1069-1080. https://doi.org/10.1046/j.1523-1739.1997.96210.x

Cited by

  1. Forest Type Classification and Ecological Characteristics for Areas of Cheonwangbong, Songnisan vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.375
  2. 산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 - vol.22, pp.5, 2019, https://doi.org/10.13087/kosert.2019.22.5.27