• Title/Summary/Keyword: Evaluation Tool Model

Search Result 784, Processing Time 0.035 seconds

Estimation of tunnel boring machine penetration rate: Application of long-short-term memory and meta-heuristic optimization algorithms

  • Mengran Xu;Arsalan Mahmoodzadeh;Abdelkader Mabrouk;Hawkar Hashim Ibrahim;Yasser Alashker;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.27-41
    • /
    • 2024
  • Accurately estimating the performance of tunnel boring machines (TBMs) is crucial for mitigating the substantial financial risks and complexities associated with tunnel construction. Machine learning (ML) techniques have emerged as powerful tools for predicting non-linear time series data. In this research, six advanced meta-heuristic optimization algorithms based on long short-term memory (LSTM) networks were developed to predict TBM penetration rate (TBM-PR). The study utilized 1125 datasets, partitioned into 20% for testing, 70% for training, and 10% for validation, incorporating six key input parameters influencing TBM-PR. The performances of these LSTM-based models were rigorously compared using a suite of statistical evaluation metrics. The results underscored the profound impact of optimization algorithms on prediction accuracy. Among the models tested, the LSTM optimized by the particle swarm optimization (PSO) algorithm emerged as the most robust predictor of TBM-PR. Sensitivity analysis further revealed that the orientation of discontinuities, specifically the alpha angle (α), exerted the greatest influence on the model's predictions. This research is significant in that it addresses critical concerns of TBM manufacturers and operators, offering a reliable predictive tool adaptable to varying geological conditions.

A Study on AI Algorithm that can be used to Arts Exhibition : Focusing on the Development and Evaluation of the Chatbot Model (예술 전시에 활용 가능한 AI 알고리즘 연구 : 챗봇 모델 개발 및 평가를 중심으로)

  • Choi, Hak-Hyeon;Yoon, Mi-Ra
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.369-381
    • /
    • 2021
  • Artificial Intelligence(AI) technology can be used in arts exhibitions ranging from planning exhibitions, filed progress, and evaluation. AI has been expanded its scope from planning exhibition and guidance services to tools for creating arts. This paper focuses on chatbots that utilize exhibition and AI technology convergence to provide information and services. To study more specifically, I developed a chatbot for exhibition services using the Naver Clova chatbot tool and information from the National Museum of Modern and Contemporary Art(MMCA), Korea. In this study, information was limited to viewing and exhibition rather than all information of the MMCA, and the chatbot was developed which provides a scenario type to get an answering user want to gain through a button and a text question and answer(Q&A) type to directly input a question. As a result of evaluating the chatbot with six items according to ELIZA's chatbot evaluation scale, a score of 4.2 out of 5 was derived by completing the development of a chatbot to be used to deliver viewing and exhibition information. The future research task is to create a perfect chatbot model that can be used in an actual arts exhibition space by connecting the developed chatbot with continuous scenario answers, resolving text Q&A-type answer failures and errors, and expanding additional services.

A Study on Prototype Model for Mesoscopic Evacuation Using Cube Avenue Simulation Model (Cube Avenue 시뮬레이션 모델을 이용한 중규모 재난대피 프로토타입 모델 연구)

  • Sin, Heung Gweon;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.33-41
    • /
    • 2013
  • Recently, the number of disasters has been seriously increasing. The total damages by the natural or man-made disasters during the past years resulted in tremendous fatalities and recovery costs. It is necessary to have efficient emergency evacuation management which is concerned with identifying evacuation route, and the estimation of evacuation and clearance times. An emergency evacuation model is important in identifying critical locations, and developing various evacuation strategies. In that existing evacuation models have focused on route analysis for indoor evacuation, there are only a few models for areawide emergency evacuation analysis. Therefore, we developed a mesoscopic model by using Cube Avenue and performed evacuation simulation, targeting road network in City of Fargo, North Dakota. Consequently, a mesoscopic model developed in this study is used to carry out dynamic analysis using network and input variable of existing travel demand model. The results of this study show that the model is an appropriate tool for areawide emergency evacuation analysis to save time and cost. Henceforth, the results of this study can be applied to develop a disaster evacuation model which can be used for a variety of disaster simulation and evaluation based on scenarios in the local metropolitan area.

Balanced Scorecard for Performance Measurement of a Nursing Organization in a Korean Hospital (대학병원 간호조직 균형 성과지표의 적합성 검증)

  • Hong, Yoon-Mi;Hwang, Kyung-Ja;Kim, Mi-Ja;Park, Chang-Gi
    • Journal of Korean Academy of Nursing
    • /
    • v.38 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • Purpose: The purpose of this study was to develop a balanced scorecard (BSC) for performance measurement of a Korean hospital nursing organization and to evaluate the validity and reliability of performance measurement indicators. Method: Two hundred fifty-nine nurses in a Korean hospital participated in a survey questionnaire that included 29-item performance evaluation indicators developed by investigators of this study based on the Kaplan and Norton's BSC (1992). Cronbach's alpha was used to test the reliability of the BSC. Exploratory and confirmatory factor analysis with a structure equation model (SEM) was applied to assess the construct validity of the BSC. Result: Cronbach's alpha of 29 items was .948. Factor analysis of the BSC showed 5 principal components (eigen value>1.0) which explained 62.7% of the total variance, and it included a new one, community service. The SEM analysis results showed that 5 components were significant for the hospital BSC tool. Conclusion: High degree of reliability and validity of this BSC suggests that it may be used for performance measurements of a Korean hospital nursing organization. Future studies may consider including a balanced number of nurse managers and staff nurses in the study. Further data analysis on the relationships among factors is recommended.

Comparative Evaluation of Intron Prediction Methods and Detection of Plant Genome Annotation Using Intron Length Distributions

  • Yang, Long;Cho, Hwan-Gue
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Intron prediction is an important problem of the constantly updated genome annotation. Using two model plant (rice and $Arabidopsis$) genomes, we compared two well-known intron prediction tools: the Blast-Like Alignment Tool (BLAT) and Sim4cc. The results showed that each of the tools had its own advantages and disadvantages. BLAT predicted more than 99% introns of whole genomic introns with a small number of false-positive introns. Sim4cc was successful at finding the correct introns with a false-negative rate of 1.02% to 4.85%, and it needed a longer run time than BLAT. Further, we evaluated the intron information of 10 complete plant genomes. As non-coding sequences, intron lengths are not limited by a triplet codon frame; so, intron lengths have three phases: a multiple of three bases (3n), a multiple of three bases plus one (3n + 1), and a multiple of three bases plus two (3n + 2). It was widely accepted that the percentages of the 3n, 3n + 1, and 3n + 2 introns were quite similar in genomes. Our studies showed that 80% (8/10) of species were similar in terms of the number of three phases. The percentages of 3n introns in $Ostreococcus$ $lucimarinus$ was excessive (47.7%), while in $Ostreococcus$ $tauri$, it was deficient (29.1%). This discrepancy could have been the result of errors in intron prediction. It is suggested that a three-phase evaluation is a fast and effective method of detecting intron annotation problems.

Evaluation Method for Improvement Efficiency of Indoor Air Quality in Residence (주택의 실내공기질 개선 평가 방법)

  • Yang, Won-Ho;Son, Bu-Soon;Yim, Sung-Kuk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.255-263
    • /
    • 2007
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time indoors. The purposes of this study were to evaluate the alternative method for improvement of indoor air quality in house after coating titanium dioxide ($TiO_2$) photocatalyst for interior part of the house using nitrogen dioxide ($NO_2$) multiple measurements. To evaluate the alternative method in indoor environment, daily indoor and outdoor $NO_2$ concentrations of an apartment and a detached house were daily measured for consecutive 21 days in winter and summer, respectively, Another daily 21 measurements were carried out after $TiO_2$ coating on wall paper of interior part in houses. All $NO_2$ concentrations were measured by passive filter badges. Indoor air quality models using mass balance are useful tool to quantify the relationship between indoor air pollution levels, ambient concentrations, and explanatory variables. Using a mass balance model and linear regression analysis, penetration factor (ventilation rate divided by sum of ventilation rate and decay rate) and source strength factor (emission rate divided by sum of ventilation rate and decay rate) were calculated. Subsequently, the decay constants were estimated. In this study. magnitude of improvement of indoor air quality could be evaluated by decay constant.

Application of K-WEAP (Korea-Integrated Water Resources Evaluation and Planning Model) (통합수자원평가계획모형 K-WEAP의 적용성 Application of K-WEAP)

  • Choi, Si-Jung;Lee, Dong-Ryul;Moon, Jang-Won;Kang, Seong-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.625-633
    • /
    • 2010
  • An integrated water resources management is highly required to use efficient water and preserve water quality due to the limits of water resources development and water pollution. K-WEAP was developed, which supports the water resources planning and evaluation within a fully integrated interactive system. In this study, we present three applications of K-WEAP. First, we examined the usefulness of K-WEAP as a water resources planning tool through its application to the National Water Resources Plan. Second, the conjunctive use of surface water and groundwater in the Geum river basin with K-WEAP was evaluated, and its results show how to support to set up a sustainable groundwater management plan. Finally, we confirmed the function of the integrated water quantity and quality management in K-WEAP, which conducted by comparing the simulated results of water quality in both QUAL2E and K-WEAP.

Development Treatment Planning System Based on Monte-Carlo Simulation for Boron Neutron Capture Therapy

  • Kim, Moo-Sub;Kubo, Kazuki;Monzen, Hajime;Yoon, Do-Kun;Shin, Han-Back;Kim, Sunmi;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.232-235
    • /
    • 2016
  • The purpose of this study is to develop the treatment planning system (TPS) based on Monte-Carlo simulation for BNCT. In this paper, we will propose a method for dose estimation by Monte-Carlo simulation using the CT image, and will evaluate the accuracy of dose estimation of this TPS. The complicated geometry like a human body allows defining using the lattice function in MCNPX. The results of simulation such as flux or energy deposition averaged over a cell, can be obtained using the features of the tally provided by MCNPX. To assess the dose distribution and therapeutic effect, dose distribution was displayed on the CT image, and dose volume histogram (DVH) was employed in our developed system. The therapeutic effect can be efficiently evaluated by these evaluation tool. Our developed TPS could be effectively performed creating the voxel model from CT image, the estimation of each dose component, and evaluation of the BNCT plan.

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

Searching an Efficient frontier in the DEA Model based on the Reference Point Method (참조점 방법을 이용한 DEA모형의 프론티어 탐구)

  • 오동일
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • DEA is a newly developed analyzing tool to measure efficiency evaluation of decision making units (DMU). It compares DMU by radial Projection on the efficient frontier. The purpose of this study is to show reference point approach used for searching solution in multiple objective linear Programming can be usefully used to determine flexible efficient frontier of each DMU In reference point approach, the minimization of ASF Produces an efficient points in frontier and enhances the usefulness of DEA by Providing flexibility in DEA and optimally allocating resources to DMU. Various DEA models can be supported by reference point method by changing the projection direction in order to choose the targets units, standards costs and management benching-marking.

  • PDF