• 제목/요약/키워드: Eutectic solution

검색결과 76건 처리시간 0.025초

용탕 침투법을 이용한 복합 삽입 금속의 제조 (Fabrication of Composite Filler Metal by Melt Infiltration)

  • 박흥일;김지태;김우열
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

규소의 질화반응에 있어 산화마그네시움의 효과 (Effect of Magnesium Oxide on the Nitridation of Silicon Compact.)

  • 박금철;최상원
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

AZ91 마그네슘 합금에서 노냉으로 생성된 불연속 석출물의 미세조직 특징 (Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.231-236
    • /
    • 2018
  • The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.

주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 진동감쇠능 (Damping Capacities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.218-225
    • /
    • 2021
  • In this study, damping capacities were comparatively investigated for Mg-9%Al alloy with as-cast (AC) and fully discontinuous precipitates (DPs) microstructures, respectively. The DPs microstructure was obtained by solution treatment at 678 K for 24 h, followed by furnace cooling to RT. The AC microstructure was typically characterized by partially divorced eutectic β(Mg17Al12) phase particles distributed along the α-(Mg) matrix cell boundaries. The DPs microstructure showed lamellar morphology consisting of α and β thin layers with various interlamellar spacings. The DPs microstructure had better damping capacity than the AC microstructure in the strain-amplitude independent region, while in the strain-amplitude dependent region, the damping behavior was reversed. In view of the microstructural features of AC and DPs, the lower concentration of Al in the α-(Mg) phase for the DPs microstructure and the lower β phase number density for the AC microstructure would be responsible for the higher damping capacities in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

인공타액에서 아말감의 부식거동에 관한 전기화학적 연구 (ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF DENTAL AMALGAM IN ARTIFICIAL SALIVA)

  • 김영남;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제13권2호
    • /
    • pp.221-235
    • /
    • 1988
  • The purpose of this study was to observe characteristic properties through the polarization curves and EMPA images from 4 different types of amalgam obtained by using the potentiostats (EG & G PARC) & EPMA (Jeol JSM-35), to investigate the degree of corrosion of each phase of amalgam on the oxidation peak, and to identify corrosion products from the corroded amalgam by use of X-ray diffractometer(Rigaku). After each amlgam alloy and Hg were triturated as the direction of the manufacturer by means of the mechanical amalgamator(Shofu), the triturated mass was inserted into the cylindrical metal mold which was 12mm in diameter and 10mm in height and was condensed by means of routine manner. The specimen was removed from the mold and stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. Anodic polarization measurement was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution(pH6.8~7.0) and artificial saliva (pH6.8~7.0) at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen in electrolyte and the potential scan was begun at the potential of 100mV cathodic from the corrosion potential. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.64$cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). EPMA images on the determined oxidation peaks of each amalgam in artificial saliva were observed. X-ray diffraction patterns of each sample were recorded before and after polarization in artificial saliva (Aristaloy, Caulk Spherical, Dispersalloy and Tytin: at +770mV, +585mV, +8.10m V and +680m V respectively) by use of a recording diffractometer. Nickel filtered Cu $K_{{\alpha}_1}$ radiation was used and sample was scanned at $4^{\circ}(2{\theta})/min.$ from $25^{\circ}$ to $80^{\circ}$. The following results were obtained. 1. Oxidation peak potential in artificial saliva shifted to more anodic direction than that in saline solution. 2. The corrosion potential of high copper amalgam was more anodic than the potential of low copper amalgam. 3. The current density was lower in artificial saliva than in saline solution. 4. One of the corrosion products, AgCl was identified by X-ray diffraction analysis. 5. ${\gamma}_2$ phase was the most susceptible to corrosion and e phase was stable in low copper amalgam and ${\eta}$' phase and Ag-Cu eutectic were susceptible to corrosion in high copper amalgam.

  • PDF

5083 Al합금 용접재의 조직 및 저온 인장성질메 미치는 시효처리의 영향 (Effect of Aging Treatment on the Microstructure and Low Temperature Tensile Properties in 5083 Aluminum Alloy Weldments)

  • 이태청;이해우;주동원;이준희;성장현
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The microstructural characteristics and low temperature tensile properties between $25^{\circ}C$ and $-196^{\circ}C$ for as-welded and age hardened specimen by using Al 5083-H321 for base metal, 5083-5356 and 5083-4043 weldments have been investigated. The hardness of 5083-5356 weldment decreases with aging treatment, whereas the weld region of 5083-4043 weldment shows remarkable increase in hardness after aging due to the precipitation of fine Si particle at the grain boundaries and interiors. Low temperature tensile properties of 5083 AI base metal, 5083-5356 and 5083-4043 weldments appear to be the increment of tensile strengths and elongations at the room temperature and $-196^{\circ}C$, while the decrement of tensile properties around $-50^{\circ}C$ is shown. Through the observation of fine serration to fracture in the stress-strain curve and tensile fractography, the increment of localized deformation leading to promote the neck initiation and the increment of the dimple size cause to decrease in tensile strengths and elongations around $-50^{\circ}C$. For the tensile specimen of the 5083 base metal, 5083-5356 and 5083-4043 weldments, the reason to increase in elongation after solution and aging treatment is the diminishment of fine pit, the resolution of Mg into the matrix and the spheridization of the eutectic Si.

  • PDF

합금원소 첨가 및 열처리 공정 제어를 통한 Al-7Si-0.35Mg 주조재 합금의 기계적 특성 향상 (Improvement of the Mechanical Properties of Al-7Si-0.35Mg Cast Alloys by the Optimised Combination of Alloying Elements and Heat Treatment)

  • 조영희;이정무;진진우;정재길
    • 한국주조공학회지
    • /
    • 제36권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Improvement of the mechanical properties of a commercial aluminium casting alloy, A356, was achieved through an optimised combination of alloying elements, modification, and heat treatment. 0.7 wt.% Cu and an additional 0.2 wt.% Mg were added to an Al-7Si-0.35Mg alloy for strengthening at both room and elevated temperatures, whilst a subsequent decrease in the ductility was compensated for by the modification of eutectic Si by Sr addition at a level of up to 110 ppm. It was found that the dissolution of Cu-rich or Mg-rich phases could be maximised by solid-solutionising an alloy with 40 ppm Sr at $530^{\circ}C$, increasing the tensile and yield strengths to 350 MPa and 297 MPa, respectively, with a reasonably high strain of 5% after peak-aging at $210^{\circ}C$. Further addition of Sr up to 110 ppm is, however, more likely to interfere with the dissolution of the Cu-rich or Mg-rich phases during solid solution treatment, resulting in a slight decrease in both tensile and yield strengths at room temperature. Besides the Cu addition, such undissolved phases, on the other hand, may contribute to elevated temperature strength at $200^{\circ}C$.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Electromagnetic Duo-Cast Al Hybrid Material

  • Suh, Jun Young;Park, Sung Jin;Kwon, Do-Kyun;Chang, Si Young
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.499-505
    • /
    • 2018
  • This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2 % proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.

생체 분해성 임플란트용 Mg-Zn-Ca 합금의 기계적 및 부식특성에 미치는 Sr 첨가의 영향 (Effect of Sr Addition on Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy for Biodegradable Implant Material)

  • 공보관;조대현;윤필환;이정훈;박진영;박익민
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.155-162
    • /
    • 2015
  • The effect of Sr addition on mechanical and bio-corrosion properties of as-cast Mg-3wt.%Zn-0.5wt.%Ca-xwt.%Sr (x = 0.3, 0.6, 0.9) alloys were examined for application as biodegradable implant material. The microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Ca-Sr alloys were characterized by using optical microscopy, scanning electron microscopy, tensile testing and electrochemical measurement in Hank's solution. The as-cast alloys contained ${\alpha}$-Mg and eutectic $Ca_2Mg_6Zn_3$ phases, while the alloys contained ${\alpha}$-Mg, $Ca_2Mg_6Zn_3$ and Mg-Zn-Ca-Sr intermetallic compound when the Sr addition was more than 0.3 wt.%. The yield strength, ultimate tensile strength and elongation increased with the increasing of Sr content up to 0.6 wt.% but decreased in the 0.9 wt.% Sr-added alloy, whereas the corrosion resistance of 0.3 wt.% Sr-added alloy was superior to other alloys. It was thought that profuse Mg-Zn-Ca-Sr intermetallic compound deteriorated both the mechanical properties and corrosion resistance of the as-cast alloy.