DOI QR코드

DOI QR Code

Damping Capacities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures

주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 진동감쇠능

  • Jun, Joong-Hwan (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2021.08.03
  • Accepted : 2021.09.02
  • Published : 2021.09.30

Abstract

In this study, damping capacities were comparatively investigated for Mg-9%Al alloy with as-cast (AC) and fully discontinuous precipitates (DPs) microstructures, respectively. The DPs microstructure was obtained by solution treatment at 678 K for 24 h, followed by furnace cooling to RT. The AC microstructure was typically characterized by partially divorced eutectic β(Mg17Al12) phase particles distributed along the α-(Mg) matrix cell boundaries. The DPs microstructure showed lamellar morphology consisting of α and β thin layers with various interlamellar spacings. The DPs microstructure had better damping capacity than the AC microstructure in the strain-amplitude independent region, while in the strain-amplitude dependent region, the damping behavior was reversed. In view of the microstructural features of AC and DPs, the lower concentration of Al in the α-(Mg) phase for the DPs microstructure and the lower β phase number density for the AC microstructure would be responsible for the higher damping capacities in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. J. Song, J. She, D. Chen, and F. Pan : J. Magnes. Alloy 8 (2020) 1. https://doi.org/10.1016/j.jma.2020.02.003
  2. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  3. W. Zheng, S. Li, B. Tand, and D. Zeng : China Found. 3 (2006) 270.
  4. C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344. https://doi.org/10.1016/S0921-5093(01)01467-8
  5. I. B. Singh, M. Singh, and S. Das : J. Magnes. Alloy 3 (2015) 142. https://doi.org/10.1016/j.jma.2015.02.004
  6. G. L. Song, A. L. Bowles, and D. H. StJohn : Mater. Sci. Eng. A 366 (2004) 74. https://doi.org/10.1016/j.msea.2003.08.060
  7. H. Pan, E. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, and A. Tang : J. Mater. Sci. 49 (2014) 3107. https://doi.org/10.1007/s10853-013-8012-3
  8. S. Celotto and T. J. Bastow : Acta Mater. 49 (2001) 41. https://doi.org/10.1016/S1359-6454(00)00305-0
  9. C. R. Hutchinson, J. F. Nie, and S. Gorsse : Metall. Mater. Trans. A 36A (2005) 2093.
  10. M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  11. K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  12. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  13. S. Takeshita, C. Watanabe, R. Monzen, and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470. https://doi.org/10.2464/jilm.64.470
  14. J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 173. https://doi.org/10.12656/JKSHT.2020.33.4.173
  15. J. H. Jun : J. Kor. Soc. Heat Treat. 31 (2018) 231. https://doi.org/10.12656/JKSHT.2018.31.5.231
  16. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  17. J. G. Han and J. H. Jun : J. Kor. Soc. Heat Treat. 32 (2019) 249.
  18. J. H. Jun : J. Alloys Compd. 75 (2017) 237. https://doi.org/10.1016/j.jallcom.2017.07.147
  19. J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 219. https://doi.org/10.12656/JKSHT.2020.33.5.219
  20. H. Okamoto : Desk Handbook Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000, p. 36.
  21. M. D. Nave, A. K. Dahle, and D. H. StJohn : Magnesium Technology, TMS, 2000, p. 233.
  22. D. Duly, Y. Brechet, and B. Chenal : Acta Metall. 40 (1992) 2289. https://doi.org/10.1016/0956-7151(92)90147-7
  23. C. Zener : Trans. AIME 167 (1946) 550.
  24. N. Ridley : Metall. Trans. A 15A (1984) 1019. https://doi.org/10.1007/BF02644694
  25. J. Wang, R. Lu, D. Qin, X. Huang, and F. Pan : Mater. Sci. Eng. A 560 (2013) 667. https://doi.org/10.1016/j.msea.2012.10.010
  26. H. Feng, Y. Yang, and H. Chang : Mater. Sci. Eng. A 609 (2014) 7. https://doi.org/10.1016/j.msea.2014.04.104
  27. H. Feng, H. Liu, H. Cao, Y. Yang, Y. Xu, and J. Guan : Mater. Sci. Eng. A 639 (2015) 1. https://doi.org/10.1016/j.msea.2015.04.092
  28. A. Granato and K. Lucke : J. Appl. Phys. 27 (1956) 583. https://doi.org/10.1063/1.1722436
  29. A. Granato and K. Lucke : J. Appl. Phys. 27 (1956) 789. https://doi.org/10.1063/1.1722485
  30. A. Granato and K. Lucke : J. Appl. Phys. 52 (1981) 7136. https://doi.org/10.1063/1.328687
  31. B. D. Trott and H. K. Birnbaum : J. Appl. Phys. 41 (1970) 4418. https://doi.org/10.1063/1.1658476
  32. Z. Zhang, X. Zeng, and W. Ding : Mater. Sci. Eng. A 392 (2005) 150. https://doi.org/10.1016/j.msea.2004.09.056