• 제목/요약/키워드: Eutectic silicon

검색결과 45건 처리시간 0.021초

Possibility of S, O, Si and K in the Earth's Core Composition and its Problems

  • Lee, Han-Yeang
    • 한국지구과학회지
    • /
    • 제25권1호
    • /
    • pp.48-51
    • /
    • 2004
  • The light element candidates such as S, O, Si, and K are discussed for the reasonable compositions in the earth's core since the available data show density difference from pure iron core. These candidates are favored by the some evidences such as depletion in the crust and mantle, and lower eutectic temperature of Fe-FeS melt for sulfur. FeO phase for oxygen, lighter mass than sulfur and solubility in metallic phases for silicon, and partitioning in Fe-FeS melt for potassium. However, other problems such as short experimental data, initial compositions of these elements, and oxidation state during the formation of the earth should be solved simultaneously to confirm these light elements.

MEMS 패키징 및 접합 기술의 최근 기술 동향 (Recent Trends of MEMS Packaging and Bonding Technology)

  • 좌성훈;고병호;이행수
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.9-17
    • /
    • 2017
  • In these days, MEMS (micro-electro-mechanical system) devices become the crucial sensor components in mobile devices, automobiles and several electronic consumer products. For MEMS devices, the packaging determines the performance, reliability, long-term stability and the total cost of the MEMS devices. Therefore, the packaging technology becomes a key issue for successful commercialization of MEMS devices. As the IoT and wearable devices are emerged as a future technology, the importance of the MEMS sensor keeps increasing. However, MEMS devices should meet several requirements such as ultra-miniaturization, low-power, low-cost as well as high performances and reliability. To meet those requirements, several innovative technologies are under development such as integration of MEMS and IC chip, TSV(through-silicon-via) technology and CMOS compatible MEMS fabrication. It is clear that MEMS packaging will be key technology in future MEMS. In this paper, we reviewed the recent development trends of the MEMS packaging. In particular, we discussed and reviewed the recent technology trends of the MEMS bonding technology, such as low temperature bonding, eutectic bonding and thermo-compression bonding.

주조접합법에 의한 TaC 직접합성에 관한 연구 (A Study on the Direct Synthesis of TaC by Cast-bonding)

  • 박홍일;이성열
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.371-378
    • /
    • 1997
  • The study for direct synthesis of TaC carbide which was a reaction product of tantalum and carbon in the cast iron was performed. Cast iron which has hypo-eutectic composition was cast bonded in the metal mold with tantalum thin sheet of thickness of $100{\mu}m$. The contents of carbon and silicon of cast iron matrix was controlled to have constant carbon equivalent of 3.6. The chracteristics of microstructure and the formation mechanism of TaC carbide in the interfacial reaction layer in the cast iron/tantalum thin sheet heat treated isothermally at $950^{\circ}C$ for various time were examined. TaC carbide reaction layer was grown to the dendritic morphology in the cast iron/tantalum thin sheet interface by the isothermal heat treatment. The composition of TaC carbide was 48.5 at.% $Ti{\sim}48.6$ at.% C-2.8 at.% Fe. The hardness of reaction layer was MHV $1100{\sim}1200$. The thickness of reaction layer linearly increased with increasing the total content of carbon in the cast iron matrix and isothermal heat treating time. The growth constant for TaC reaction layer was proportional to the log[C] of the matrix. The formation mechanism of TaC reaction layer at the interface of cast iron/tantalum thin sheet was proved to be the interfacial reaction.

  • PDF

알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구 (A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging)

  • 이성모;왕신일;김효량;배원병
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어 (Microstructural Control of Al-Sn Alloy with Addition of Cu and Si)

  • 손광석;박태은;김진수;강성민;김태환;김동규
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.