• Title/Summary/Keyword: Eutectic mixture

Search Result 46, Processing Time 0.03 seconds

Tablet Formulation of Eutectic Mixture: Preparation of Tablet Containing Aspirin and Isopropylantipyrine (공융 혼합물의 정제화에 관한 연구 : 아스피린 및 이소푸로필안티피린 함유 정제의 제조)

  • 김종국;최성옥;최한곤
    • YAKHAK HOEJI
    • /
    • v.29 no.4
    • /
    • pp.193-198
    • /
    • 1985
  • In formulation technology, the drugs forming eutectic mixture cause many pharmaceutical problems. In this study, the method to prevent such problems has been investigated. The combined drugs of aspirin and isopropylantipyrine forming eutectic mixtures were granulated by using three kinds of binders (PVP, HPMC, starch) and these granules were made into pellets by compacting them with various compressional forces. It was possible to select optimum conditions in granulating, tableting, etc. Disintegration time and dissolution pattern were investigated about this formulation, too.

  • PDF

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju;Seo, Won-Chul;Lim, Taeho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.392-398
    • /
    • 2020
  • Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

Sn Effects on Microstructure and Mechanical Properties of Ultrafine Ti-Fe-Sn Alloys (Sn 첨가에 따른 극미세 Ti-Fe-Sn 합금의 미세조직 및 기계적 성질 변화)

  • Han, Jun-Hee;Song, Gi-An;Pi, Dong-Hyouk;Bang, Chang-Wook;Kim, Ki-Buem
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.69-73
    • /
    • 2008
  • In the present study, microstructural evolution and mechanical properties of Ti-Fe-Sn ultrafine eutectic alloys have been investigated. Ultrafine eutectic microstructure consisting of a mixture of ${\beta}$-Ti solid solution and TiFe intermetallic compound homogeneously formed in $(Ti_{70.5}Fe_{29.5})_{100-x}Sn_x$ alloys with x = 0, 1 and 3. Addition of Sn is effective to modify the eutectic colony into the spherical shape with decreasing the lamellar spacing and colony size. This results in enhancing the macroscopic plasticity up to 3.1% of the Ti-Fe-Sn ultrafine eutectic alloys.

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3

  • Zhang, C.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

Thermotropic Compounds with Two Terminal Mesogenic Units and a Central Spacer, 8. Mutual Miscibility between the Dimesogenic, Nematic Compounds

  • Jin, Jung-Il;Choi, E-Joon;Park, Joo-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.353-357
    • /
    • 1986
  • Mutual miscibility between thermotropic, nematic compounds with two terminal mesogenic units and a central spacer was studied by differential scanning calorimetry (DSC) and on a polarizing microscope. It was found that the isomorphous, nematic dimesogenic compounds with wide variety of structures are miscible in mesophases with each other over the whole range of composition and that Schroder-van Laar equation almost correctly predicts the melting temperature and composition of eutectic mixtures. There was a pair of compounds which were exceptional and did not form a eutectic mixture and, instead, revealed a monotonous change in melting (T$_{m}$) and isotropic transition temperatures (T$_{i}$) as the composition of the mixture was varied. The compounds were of almost same structure in shape and seemed to undergo formation of solid solution.

Effect of deep eutectic solvent (DES) on the extraction of asiaticoside and madecassoside from Centella asiatica (병풀(Centella asiatica)로부터의 asiaticoside와 madecassoside의 추출효율에 미치는 DES의 영향)

  • Jaeyeong Choi;Yuim Jeon;Sung Ho Ha
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.128-134
    • /
    • 2023
  • Centella asiatica (C. asiatica) extracts, including asiaticoside and madecassoside, are used in ointments to treat the wound and atopic dermatitis due to their antibacterial and skin-regenerating effects in Asia. Therefore, research on the cultivation and extraction efficiency of C. asiatica is being actively conducted to increase commercialization efficiency. In this study, various deep eutectic solvents (DESs) were prepared and used as the extraction solvents according to the mole ratio between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). And then, the extraction yields in distilled water (DW) and methanol (MeOH), commonly used extraction solvents for C. asiatica, were compared and analyzed by HPLC in the optimized operating condition. As a result, a mixture of DW and DES at a ratio of 3:7 showed about 1.4 times higher extraction efficiency than MeOH only. Conversely, the extraction efficiency in a mixture of MeOH and DES at a ratio of 3:7 was about 6 % lower than that in MeOH only.

Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion (역확산을 고려한 이원합금의 비평형 수지상응고 해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

Analytical solution to the conduction-dominated solidification of a binary mixture (열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해)

  • Jeong, Jae-Dong;Yu, Ho-Seon;No, Seung-Tak;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.