DOI QR코드

DOI QR Code

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju (Department of Chemical Engineering, Soongsil University) ;
  • Seo, Won-Chul (Department of Chemical Engineering, Soongsil University) ;
  • Lim, Taeho (Department of Chemical Engineering, Soongsil University)
  • Received : 2020.06.26
  • Accepted : 2020.07.13
  • Published : 2020.11.30

Abstract

Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

Keywords

References

  1. C. Battaglia, A. Cuevas and S. de Wolf, Energy Environ. Sci., 2016, 9, 1552-1576. https://doi.org/10.1039/c5ee03380b
  2. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman and H. A. Atwater, Light Sci. Appl., 2013, 2(1), e45. https://doi.org/10.1038/lsa.2013.1
  3. H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner and T. M. Barnes, Appl. Phys. Lett., 2015, 106(13), 133501. https://doi.org/10.1063/1.4916634
  4. N.G. Park, Mater. Materials Today, 2015, 18(2), 65-72. https://doi.org/10.1016/j.mattod.2014.07.007
  5. M. Aliaghayee, H.G. Fard and A. Zandi, J. Electrochem. Sci. Technol., 2016, 7(3), 218-227. https://doi.org/10.5229/JECST.2016.7.3.218
  6. S. Nam, T.K. Vu, D.T. Le and I. Oh, J. Electrochem. Sci. Technol., 2018, 9(2), 118-125. https://doi.org/10.5229/JECST.2018.9.2.118
  7. K. Hansen, Energy Strateg. Rev., 2019, 24, 68-82. https://doi.org/10.1016/j.esr.2019.02.003
  8. R. Knoblauch, D. Boing, W. L. Weingaertner, K. Wegener, F. Kuster and F. A. Xavier, Wear, 2018, 414, 50-58. https://doi.org/10.1016/j.wear.2018.07.025
  9. T. Nohira, K. Yasuda, and Y. Ito, Nat. Mater., 2003, 2(6), 397-401. https://doi.org/10.1038/nmat900
  10. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu and G. Z. Chen, ChemPhysChem, 2006, 7(8), 1750-1758. https://doi.org/10.1002/cphc.200600149
  11. W. Xiao, D. H. Wang, Chem. Soc. Rev., 2014, 43(10), 3215-3228. https://doi.org/10.1039/c3cs60327j
  12. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara and T. Homma, J. Electrochem. Soc., 2014, 161(7), D3116 https://doi.org/10.1149/2.017407jes
  13. W. Xiao, X. B. Jin and G. Z. Chen, J. Mater. Chem. A, 2013, 1(35), 10243-10250. https://doi.org/10.1039/c3ta11823a
  14. S. K. Cho, F. R. F. Fan, A. J. Bard, Electrochim. Acta, 2012, 65, 57-63. https://doi.org/10.1016/j.electacta.2012.01.008
  15. J. Zhao, H. Y. Yin, T. H. Lim, H. W. Xie, H. Y. Hsu, F. Forouzan, and A. J. Bard, J. Electrochem. Soc., 2016, 163(9), D506-D514.
  16. S. K. Cho, F. R. F. Fan, A. J. Bard, Angew. Chem. Int. Ed., 2012, 124(51), 12912-12916. https://doi.org/10.1002/ange.201206789
  17. B. Bokhonov and M. Korchagin, J. Alloy Compd., 2002, 335(1-2), 149-156. https://doi.org/10.1016/S0925-8388(01)01822-9
  18. M. Song, Y. T. Zhang, J. Chun, S. Y. Hu, M. Tang and D. S. Li, Nanoscale, 2020, 12(14), 7538-7543. https://doi.org/10.1039/c9nr10695b
  19. E. I. Givargizov, J. Cryst. Growth, 1975, 20-30.
  20. S. Fang, H. Wang, J. Y. Yang, B. Yu and S. Lu, Faraday Discuss., 2016, 190, 433-449. https://doi.org/10.1039/c5fd00222b
  21. R. W. Olesinski, A. B. Gokhale and G. J. Abbaschian, Bulletin of Alloy Phase Diagrams, 1989, 10(6), 635-640. https://doi.org/10.1007/BF02877631
  22. W. Xiao, X. Jin, Y. Deng, D. Wang and G. Z. Chen, J. Electroanal. Chem., 2010, 639(1-2), 130-140. https://doi.org/10.1016/j.jelechem.2009.12.001