• Title/Summary/Keyword: Eurocode

Search Result 356, Processing Time 0.027 seconds

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1

  • Kateris, D.L.;Fragos, V.P.;Kotsopoulos, T.A.;Martzopoulou, A.G.;Moshou, D.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.481-494
    • /
    • 2012
  • The greenhouse type metal structures are increasingly used in modern construction of livestock farms because they are less laborious to construct and they provide a more favorable microclimate for the growth of animals compared to conventional livestock structures. A key stress factor for metal structures is the wind. The external pressure coefficient ($c_{pe}$) is used for the calculation of the wind effect on the structures. A high pressure coefficient value leads to an increase of the construction weight and subsequently to an increase in the construction cost. The EC1 in conjunction with EN 13031-1:2001, which is specialized for greenhouses, gives values for this coefficient. This value must satisfy two requirements: the safety of the structure and a reduced construction cost. In this paper, the Navier - Stokes and continuity equations are solved numerically with the finite element method (Galerkin Method) in order to simulate the two dimensional, incompressible, viscous air flow over the vaulted roofs of single span and twin-span with eaves livestock greenhouses' structures, with a height of 4.5 meters and with length of span of 9.6 and 14 m. The simulation was carried out in a wind tunnel. The numerical results of pressure coefficients, as well as, the distribution of them are presented and compared with data from Eurocodes for wind actions (EC1, EN 13031-1:2001). The results of the numerical experiment were close to the values given by the Eurocodes mainly on the leeward area of the roof while on the windward area a further segmentation is suggested.

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

Strength Evaluation of T-type Tubular Joints for Circular Section Multi-Column Wind Towers (원형단면 멀티기둥 풍력타워 적용 T형 강관조인트 강도 평가)

  • Kim, Kyung Sik;Park, Hyun Yong;Seo, Dong Hyuck
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.119-129
    • /
    • 2015
  • Due to reduced self weight and alleviated wind effect, the multi-column wind towers that consist of a number of circular tubes as vertical members interconnected with horizontal brace members can be a substitute for the large-scale single cylinder wind towers. It is critical to guarantee strengths of tubular joints where vertical and horizontal members are structurally connected in order to make the whole multi-column system behave as a single tower structure. In this study, strength evaluation has been conducted for T-type tubular joints that are applicable in multi-column towers. Four of available design codes, i.e., AISC, Eurocode3, ISO 19902, CIDECT have been investigated and predictor equations in the considered design codes were validated and discussed through parametric numerical study on slenderness ratios of chords and braces at joints.

A Study for an Evaluation of Flexural Strength of Plate Girders Reinforced with One Line of Longitudinal Stiffeners (수평보강재로 1단 보강된 플레이트거더의 휨강도 평가 방안 연구)

  • Kim, Byung Jun;Park, Yong Myung;Mykyta, Kovalenko;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.281-289
    • /
    • 2017
  • The current AASHTO LRFD and Eurocode 3 specifications have been found to underestimate the flexural strength of longitudinally reinforced plate girders. This is because the web-flange interaction is not considered appropriately when a web is reinforced. The buckling strength of compression flange increases due to the improved rotational restraint to the compression flange. Also, the compression flange and the longitudinal stiffener could constrain the web rotation, so that a certain area of the web reaches yield strength. In this study, a model for evaluating the flexural strength is proposed for plate girders reinforced with one line of longitudinal stiffeners, considering the increase of the buckling strength of the compression flange and the actual stress distribution of the web. The flexural strengths of the conventional steel(SM490) and the high-strength steel(HSB800) plate girders were evaluated from the nonlinear analysis and the applicability of the proposed model was analyzed.

Ultimate capacity of welded box section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.15-33
    • /
    • 2012
  • For an axially loaded box-shaped member, the width-to-thickness ratio of the plate elements preferably should not be greater than 40 for Q235 steel grades in accordance with the Chinese code GB50017-2003. However, in practical engineering the plate width-to-thickness ratio is up to 120, much more than the limiting value. In this paper, a 3D nonlinear finite element model is developed that accounts for both geometrical imperfections and residual stresses and the ultimate capacity of welded built-up box columns, with larger width-to-thickness ratios of 60, 70, 80, and 100, is simulated. At the same time, the interaction buckling strength of these members is determined using the effective width method recommended in the Chinese code GB50018-2002, Eurocode 3 EN1993-1 and American standard ANSI/AISC 360-10 and the direct strength method developed in recent years. The studies show that the finite element model proposed can simulate the behavior of nonlinear buckling of axially loaded box-shaped members very well. The width-to-thickness ratio of the plate elements in welded box section columns can be enlarged up to 100 for Q235 steel grades. Good agreements are observed between the results obtained from the FEM and direct strength method. The modified direct strength method provides a better estimation of the column strength compared to the direct strength method over the full range of plate width-to-thickness ratio. The Chinese code and Eurocode 3 are overly conservative prediction of column capacity while the American standard provides a better prediction and is slightly conservative for b/t = 60. Therefore, it is suggested that the modified direct strength method should be adopted when revising the Chinese code.

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Influence of Tension Stiffening Effect on Deflection and Crack Width in RC Members (철근콘크리트 부재의 처짐과 균열폭에 대한 인장증강효과의 영향)

  • Choi, Seung-Won;Yang, Jun-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.761-768
    • /
    • 2010
  • When cracks occur in reinforced concrete structures, a steel carries all tensile force at crack section, while the concrete between cracks carries a part of the tensile force due to bond, so that the steel is less elongated. This is called the tension-stiffening effect, that plays an important role in verification of a serviceability limit state. But it is a complicated work to use a complex strain distribution between cracks, therefore an average strain is used to calculate deflection and crack width. In Eurocode 2, tension-stiffening effect expressed in the first order form or the second order form is used in calculating an average curvature for deflection. In this study for a flexural member deflection and crack width are calculated using various models for the tension-stiffening effect and the results are compared with the values of Eurocode 2 and KCI provisions. As results, the predicted values using the second order form are appeared to be well agreed with the experimental values and it could secure more analytical consistency.

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.