• Title/Summary/Keyword: Euler-Bernoulli model

Search Result 193, Processing Time 0.024 seconds

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

A Study on the Static Rigidity of the End Mill (엔드밀의 정적 강성에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.9-14
    • /
    • 1996
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of radial cross sections of tile helical end mill is calculated for the determination of the relation between cross section and rigidity of tile tools. Using tile Bernoulli-Euler beam and and the concept of equivalent diameter, a deflection model is established, which includes most influence from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

Vibration analysis of a cracked beam with axial force and crack identification

  • Lu, Z.R.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.355-371
    • /
    • 2012
  • A composite element method (CEM) is presented to analyze the free and forced vibrations of a cracked Euler-Bernoulli beam with axial force. The cracks are introduced by using Christides and Barr crack model with an adjustment on one crack parameter. The effects of the cracks and axial force on the reduction of natural frequencies and the dynamic responses of the beam are investigated. The time response sensitivities with respect to the crack parameters (i.e., crack location, crack depth) and the axial force are calculated. The natural frequencies obtained from the proposed method are compared with the analytical results in the literature, and good agreement is found. This study shows that the cracks in the beam may have significant effects on the dynamic responses of the beam. In the inverse problem, a response sensitivity-based model updating method is proposed to identify both a single crack and multiple cracks from measured dynamic responses. The cracks can be identified successfully even using simulated noisy acceleration responses.

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.29-37
    • /
    • 2022
  • The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding;Yi-Wen, Zhang;Gui-Lin, She
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.433-443
    • /
    • 2022
  • In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.