• Title/Summary/Keyword: Euler-Bernoulli model

Search Result 193, Processing Time 0.022 seconds

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model

  • Farajpour, Ali;Ghayesh, Mergen H.;Farokhi, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.71-81
    • /
    • 2019
  • The objective of this paper is to develop a size-dependent nonlinear model of beams for fluid-conveying nanotubes with an initial deflection. The nonlinear frequency response of the nanotube is analysed via an Euler-Bernoulli model. Size influences on the behaviour of the nanosystem are described utilising the nonlocal strain gradient theory (NSGT). Relative motions at the inner wall of the nanotube is taken into consideration via Beskok-Karniadakis model. Formulating kinetic and elastic energies and then employing Hamilton's approach, the nonlinear motion equations are derived. Furthermore, Galerkin's approach is employed for discretisation, and then a continuation scheme is developed for obtaining numerical results. It is observed that an initial deflection significantly alters the frequency response of NSGT nanotubes conveying fluid. For small initial deflections, a hardening nonlinearity is found whereas a softening-hardening nonlinearity is observed for large initial deflections.

Analytical solutions for bending of transversely or axially FG nonlocal beams

  • Nguyen, Ngoc-Tuan;Kim, Nam-Il;Lee, Jaehong
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.641-665
    • /
    • 2014
  • This paper presents the analytical solutions for the size-dependent static analysis of the functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is assumed to vary through the thickness or longitudinal directions according to the power law. The governing equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with various boundary conditions. The verification of the model is obtained by comparing the current results with previously published works and a good agreement is observed. Numerical results are presented to show the significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length of beams on the bending behavior of nonlocal FG beams.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.