• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.024 seconds

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Critical Loads of Tapered Cantilever Columns with a Tip Mass (자유단 집중질량을 갖는 변단면 캔틸레버 기둥의 임계하중)

  • Jeong, Jin Seob;Lee, Byoung Koo;Kim, Gwon Sik;Kim, Jong Ung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.699-705
    • /
    • 2005
  • This paper investigates critical loads of tapered cantilever columns with a tip mass, subjected to a follower force. The linearly tapered solid rectangular cross-sections are adopted as the column taper. The differential equation governing free vibrations of such columns, also called Beck's columns, is derived using the Bernoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters, namely, the taper type, the subtangential parameter, and the mass ratio.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory

  • Alwabli, Afaf S.;Kaci, Abdelhakim;Bellifa, Hichem;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alzahrani, Dhafer A.;Abulfaraj, Aala A.;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Mahmoud, S.R.;Hussain, Muzamal
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Microtubules (MTs) are the main part of the cytoskeleton in living eukaryotic cells. In this article, a mechanical model of MT buckling, considering the modified strain gradient theory, is analytically examined. The MT is assumed as a cylindrical beam and a new single variable trigonometric beam theory is developed in conjunction with a modified strain gradient model. The main benefit of the present formulation is shown in its new kinematic where we found only one unknown as the Euler-Bernoulli beam model, which is even less than the Timoshenko beam model. The governing equations are deduced by considering virtual work principle. The effectiveness of the present method is checked by comparing the obtained results with those reported by other higher shear deformation beam theory involving a higher number of unknowns. It is shown that microstructure-dependent response is more important when material length scale parameters are closer to the outer diameter of MTs. Also, it can be confirmed that influences of shear deformation become more considerable for smaller shear modulus and aspect ratios.

Analytic responses of slender beams supported by rotationally restrained hinges during support motions

  • Ryu, Jeong Yeon;Kim, Yong-Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2939-2948
    • /
    • 2020
  • This paper presents an analytic solution procedure of the rotationally restrained hinged-hinged beam subjected to transverse motions at supports based on EBT (Euler-Bernoulli beam theory). The EBT solutions are compared with the solutions based on TBT (Timoshenko beam theory) for a wide range of the rotational restraint parameter (kL/EI) of slender beams whose slenderness ratio is greater than 100. The comparison shows the followings. The internal loads such as bending moment and shearing force of an extremely thin beam obtained by EBT show a good agreement with those obtained by TBT. But the discrepancy between two solutions of internal loads tends to increase as the slenderness ratio decreases. A careful examination shows that the discrepancy of the internal loads originates from their dynamic components whereas their static components show a little difference between EBT and TBT. This result suggests that TBT should be employed even for slender beams to consider the rotational effect and the shear deformation effect on dynamic components of the internal loads. The influence of the parameter on boundary conditions is examined by manipulating the spring stiffness from zero to a sufficiently large value.

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.965-970
    • /
    • 2002
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a wide range of section ratio, dimensionless spring constant and mass ratio.

  • PDF