• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.028 seconds

Modelling and experimental investigations on stepped beam with cavity for energy harvesting

  • Reddya, A. Rami;Umapathy, M.;Ezhilarasib, D.;Uma, G.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.623-640
    • /
    • 2015
  • This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

Non-Linear Behavior of Shear Deformable Simple Beam with a Concentrated Load (전단변형을 고려한 집중하중을 받는 단순보의 비선형 거동)

  • 이병구;이태은;안대순;김권식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.53-60
    • /
    • 2003
  • This paper explores the governing differential equations for the non-linear behavior of shear deformable simple beam with a concentrated load. In order to apply the Bernoulli-Euler beam theory to simple beam, the bending moment equation on any point of the elastica is obtained by concentrated load. The Runge-Kutta and Regula-Felsi methods, respectively, are used to integrate the governing differential equations and to compute the beam's rotation at the left end of the beams. The characteristic values of deflection curves for various load parameters are calculated and discussed

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces (조화집중하중을 받는 무한보에서의 음향방사)

  • 김병삼;홍동표
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces (조화분포이동하중을 받는 무한보에서의 음향방사)

  • 김병삼;이태근;홍동표
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.