• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.029 seconds

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Effects of a Moving Mass on the Dynamic Behavior of Cantilever Beams with Double Cracks

  • Son, In-Soo;Cho, Jeong-Rae;Yoon, Han-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.33-39
    • /
    • 2008
  • The effects of a double crack and tip masses on the dynamic behavior of cantilever beams with a moving mass are studied using numerical methods. The cantilever beams are modeled by applying Euler-Bernoulli beam theory. The cracked sections are represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack, moving mass, and tip mass, and the coupling of these factors on the vibration mode and the frequencies of the double-cracked cantilever beams are determined analytically. The methodology provides a basis for analyzing the dynamic behavior of a beam with an arbitrary number of cracks and a moving mass.

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Effects of Crack on Stability of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Free vibration analysis of continuous bridge under the vehicles

  • Tan, Guojin;Wang, Wensheng;Jiao, Yubo;Wei, Zhigang
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.335-345
    • /
    • 2017
  • Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of vehicle parameters on natural frequencies are also demonstrated.

Investigation of natural frequencies of multi-bay and multi-storey frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • This study concerns about calculating exact natural frequencies of frames using a single variable shear deformation theory (SVSDT) which considers the parabolic shear stress distribution across the cross section. Free vibration analyses are performed for multi-bay, multi-storey and multi-bay multi-storey type frame structures. Dynamic stiffness formulations are derived and used to obtain first five natural frequencies of frames. Different beam and column cross sections are considered to reveal their effects on free vibration analysis. The calculated natural frequencies are tabulated with the results obtained using Euler-Bernoulli Beam Theory (EBT) and Timoshenko Beam Theory (TBT). Moreover, the effects of inner and outer columns on natural frequencies are compared for multi-bay frames. Several mode shapes are plotted.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Zero locus of a beam with varying actuator and sensor locations and dynamical analysis (Actuator와 sensor의 위치 변화에 따른 beam의 zero궤적과 동역학적 해석)

  • 이영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.474-478
    • /
    • 1992
  • The non-rational transfer function of a Bernoulli-Euler beam, as an important component of a flexible structure, is analyzed. The true pattern of zeros of that transfer function is investigated as a function of sensor and actuator seperation. Translational displacement sensors are used for two cases in which a force input and a moment input are seperately applied. When the displacement sensor is located at a certain point, the first pair of zeros on the real axis of the s-plane arrive at the origin and cancel the rigid-body mode. The location of the translational displacement sensors on the beamat which the rigid-body mode of the beam is unobservable is analyzed as the center of percussion and is uniquely located for each case. If sensor is moved beyond such a point, a pair of zeros appear on the imaginary axis and move away from the origin along the imaginary axis of the s-plane.

  • PDF

Dynamic Stability Analysis of Tapered Beck Columns (변단면 Beck 기둥의 동적안정 해석)

  • Lee Byoung-Koo;Lee Tae-Eun;Kang Hee-Jong;Kim Gwon-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of tapered columns with clamped one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck columns is derived using the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter, mass ratio and spring stiffness.

  • PDF