• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.024 seconds

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.

A MEMORY TYPE BOUNDARY STABILIZATION FOR AN EULER-BERNOULLI BEAM UNDER BOUNDARY OUTPUT FEEDBACK CONTROL

  • Kang, Yong-Han;Park, Jong-Yeoul;Kim, Jung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.947-964
    • /
    • 2012
  • In this paper, the memory type boundary stabilization for an Euler-Bernoulli beam with one end fixed and control at the other end is considered. We prove the existence of solutions using the Galerkin method and then investigate the exponential stability of solutions by using multiplier technique.

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Transverse Vibration of a Uniform Euler-Bernoulli Beam Under Varying Axial Force Using Differential Transformation Method

  • Shin Young-Jae;Yun Jong-Hak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the application of techniques of differential transformation method (DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force is derived and verified. The varying axial force was extended to the more general case which was high polynomial consisted of many terms. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The accuracy and the convergence in solving the problem by DTM are discussed.

Vibration Analysis for the Euler-Bernoulli Wedge Beam by Using Differential Transformation Method (미분변환법에 의한 Euler-Bernoulli 쐐기 보의 진동 해석)

  • Yun, Jong-Hak;Shin, Young-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1318-1323
    • /
    • 2005
  • In this paper, the vibration analysis for the Euler-Bernoulli complete and truncate wedge beams by differential Transformation method(DTM) was investigated. The governing differential equation of the Euler-Bernoulli complete and truncate wedge beams with regular singularity is derived and verified. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The usefulness and the application of DTM are discussed.

Vibration Analysis for the Euler-Bernoulli Wedge Beam by using Differential Transformation Method (미분변환법에 의한 Euler-Bernoulli 쐐기 보의 진동 해석)

  • Shin, Young-Jae;Yun, Jong-Hak;Ferdinand, T.;Willmo, I.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.507-512
    • /
    • 2005
  • This paper investigated the vibration analysis fer the Euler-Bernoulli complete and truncate wedge beams by Differential Transformation Method(DTM). The governing differential equation of the Euler-Bernoulli complete and truncate wedge beams with regular singularity is derived and verified. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The usefulness and the application of DTM are discussed.

  • PDF

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.