• 제목/요약/키워드: Euler Beam Theory

검색결과 337건 처리시간 0.023초

전달행렬법을 사용한 크랭크축의 3차원 진동해석 (The Transfer Matrix Method for Three-Dimensional Vibration Analysis of Crank Shaft)

  • 이정윤;오재응
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.152-159
    • /
    • 1997
  • This paper presents a vibration analysis method of crank shaft of six cylinder internal combustion engine. For simple analysis journal, pin and arm parts were assumed to have uniform section. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, modeshapes and transfer functions of crank shaft were investigated based upon the Euler beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the existing paper results.

  • PDF

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.

집중하중을 받는 변단면 고정-이동지점 보의 비선형 거동 (Non-Linear Behavior of Tapered Beams with Clamped-Roller Ends, subjected to a Concentrated Load)

  • 이병구;이종국;최규문;김무영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.201-208
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentrated load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastica is obtained from the final equilibrium state. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of clamped-roller beam are derived, and solved numerically. Three kinds of tapered beam types are considered. The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

단순지지 변화곡선 길이 보의 정확탄성곡선 (Elastica of Simple Variable-Arc-Length Beams)

  • 이병구;박성근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.177-184
    • /
    • 1997
  • 이 논문은 한개의 집중하중을 받는 단순지지 변화곡선길이 보에 관한 연구이다. Bernoulli-Euler 보 이론에 의하여 정확탄성곡선을 지배하는 미분방정식을 유도하고 이를 수치해석하여 정확탄성곡선의 거동값들을 예측하였다. 미분방정식을 적분하기 위하여 Runge-Kutta method를 이용하고, 단부의 회전각을 산출하기 위하여 Regula-Falsi method를 이용하였다. 본 연구에서의 수치해석 결과들은 문헌값들과 매우 잘 일치하여 본 연구방법의 타당성을 입증하였다. 수치해석의 결과로 정확탄성곡선의 거동값과 하중사이의 관계 및 한계거동값과 하중위치변수 사이의 관계를 각각 그림에 나타내었다. 수치해석의 결과를 분석하여 변화곡선길이 보에서 발생가능한 최대 단부회전각, 최대 처짐 및 최대 휨모멘트를 산정하였다.

  • PDF

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory

  • Elmeiche, Noureddine;Abbad, Hichem;Mechab, Ismail;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.737-746
    • /
    • 2020
  • This paper attempts to investigate the free vibration of functionally graded material beams with nonuniform width based on the nonlocal elasticity theory. The theoretical formulations are established following the Euler-Bernoulli beam theory, and the governing equations of motion of the system are derived from the minimum total potential energy principle using the nonlocal elasticity theory. In addition, the Differential Quadrature Method (DQM) is applied, along with the Chebyshev-Gauss-Lobatto polynomials, in order to determine the weighting coefficient matrices. Furthermore, the effects of the nonlocal parameter, cross-section area of the functionally graded material (FGM) beam and various boundary conditions on the natural frequencies are examined. It is observed that the nonlocal parameter and boundary conditions significantly influence the natural frequencies of the functionally graded material beam cross-section. The results obtained, using the Differential Quadrature Method (DQM) under various boundary conditions, are found in good agreement with analytical and numerical results available in the literature.

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

Winkler형 지반위에 놓인 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations)

  • 오상진;이병구;이인원
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory

  • Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.621-631
    • /
    • 2018
  • In this paper, an exact analytical solution is developed for the analysis of the post-buckling non-linear response of simply supported deformable symmetric composite beams. For this, a new theory of higher order shear deformation is used for the analysis of composite beams in post-buckling. Unlike any other shear deformation beam theories, the number of functions unknown in the present theory is only two as the Euler-Bernoulli beam theory, while three unknowns are needed in the case of the other beam theories. The theory presents a parabolic distribution of transverse shear stresses, which satisfies the nullity conditions on both sides of the beam without a shear correction factor. The shear effect has a significant contribution to buckling and post-buckling behaviour. The results of this analysis show that classical and first-order theories underestimate the amplitude of the buckling whereas all the theories considered in this study give results very close to the static response of post-buckling. The numerical results obtained with the novel theory are not only much more accurate than those obtained using the Euler-Bernoulli theory but are almost comparable to those obtained using higher order theories, Accuracy and effectiveness of the current theory.