• Title/Summary/Keyword: Eudragit RS

Search Result 40, Processing Time 0.02 seconds

Preparation and Evaluation of Sustained Release Aspirin Microcapsules Using Eudragit $RS^{\circledR}$ Polymer (Eudragit $RS^{\circledR}$를 이용한 지속 방출형 아스피린 마이크로캅셀의 제조 및 평가)

  • Chun, In-Koo;Shin, Dong-Won
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.26-39
    • /
    • 1988
  • Eudragit $RS^{\circledR}$ polymer was used as a wall material for the microencapsulation of aspirin by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene (PIB) in cyclohexane, and microcapsules obtained were evaluated by particle size analysis, scanning electron microscopy (SEM), drug release and drug stability test. With PIB as a coacervation inducing agent, smooth and tight microcapsules with less aggregation were obtained. Below 1 : 0.3 core-wall ratio, it was possible to coat individual particle. Variation of production conditions showed that increasing the proportion of wall material, particle size and wall thickness of microcapsules and the concentration of paraffin wax in cyclohexane as a sealant sustained drug release rates effectively. SEM confirmed that larger microcapsules after drug release did not rupture into smaller particles but contained a few small pores on the surface. Aspirin release from Eudragit $RS^{\circledR}$ coated microcapsules was independent of the pH of medium, and the mechanism of drug release from non-sealed and sealed microcapsules appeared to fit Higuchi matrix model kinetics. Aspirin in the mixture of aspirin microcapsules and sodium bicarbonate was by far more stable than that in the mixture of pure aspirin and sodium bicarbonate.

  • PDF

In Vitro Controlled Release of Piracetam with Coated Ion-Exchange Resin (이온교환수지를 이용한 피라세탐의 in vitro 방출조절)

  • Hwang, Young-Sook;Lee, Kyung-Tae;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.2
    • /
    • pp.105-109
    • /
    • 1999
  • The sustained release of piracetam by complexation with ion exchange resin was prepared. The complex was coated with Eudragit RS100 and their releases in vitro were conducted with various different kinds of medium solution. Dissolution rate increased as ionic strength, acidity and drug concentrations increased and reached its maximal plateau concentration within 5 min. Based on these data, The controlled release of piracetam using ion-exchange piracetam complex coated with Eudragit RS100 could be available.

  • PDF

Evaluation of Bioavailability of Bioadhesive Microcapsules Containing Cephalexin (세팔렉신 함유 생체막점착성 마이크로캅셀의 생체이용율 평가)

  • Han, Kun;Kim, Jung-Hwan;Chung, Youn-Bok;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.177-186
    • /
    • 1994
  • Bioadhesive microcapsules of cephalexin, using Eudragit RS/RL coated with polycarbophil or carbopol, were evaluated biopharmaceutically. The GI transit of microcapsules in rats was studied. Bioadhesive microcapsules coated with polycarbophil or carbopol were shown to have substantially longer GI transit time than Eudragit RS/RL microcapsule. The delay in transit time was due to bioadhesion of the polymer to the mucin-epithelial cell surface which was clearly observable on animal autopsy. Plasma drug levels in rabbits showed that bioadhesive microcapsules resulted in a longer duration of action and greater bioavailability than other microcapsule or drug powder. Thus, the principle of bioadhesion can significantly improve therapy, due to a reduced rate of gastric emptying, an increase in contact time, and the intimacy of contact of the drug with the absorbing membrane.

  • PDF

Biopharmaceutical Studies on Zipeprol Dihydrochloride Microcapsules (염산지페프를 마이크로캅셀에 관한 생물약제학적 연구)

  • Yong, Jae-Ick;Kim, Ock-Nam
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.187-195
    • /
    • 1988
  • Poorly permeable $Eudragit^{\circledR}$ RS 100 polymer was used as a wall material for the microencapsulation of zipeprol dihydrochloride by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene in cyclohexane, and microcapsules obtained were evaluated in vitro by particle size analysis, scanning electron microscopy, drug release test and in vivo bioavailability test in rats. The mechanism of drug release from microcapsules appeared to fit Higuchi matrix model kinetics. The area under the first moment of plasma concentration-time curve of the microcapsules obtained was considerably increased (p<0.05) as compared with that from zipeprol dihydrochloride oral solution. Therefore, it may be suggested that $Eudragit^{\cirledR}$ RS 100 coated zipeprol dihydrochloride microcapsules can be used as a sustained release medication.

  • PDF

Preparation and Controlled Release of Microcapsules Containing $Ketoprofen-{\beta}-Cyclodextrin$ Solid Dispersion (케토프로펜-${\beta}$-시클로덱스트린 고체분산체의 마이크로캅셀화 및 제어 방출)

  • Chun, In-Koo;Park, Jung-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 1992
  • This study was aimed to control the release characteristics of ketoprofen by microencapsulating $ketoprofen-{\beta}-cyclodextrin\;(KF-{\beta}-CyD)$ solid dispersion with Eudragit RS by the phase separation method using a nonaqueous vehicle. KF alone was also microencapsulated with Eudragit RS by the evaporation process in water phase. The results obtained showed that it was not possible to microencapsulate KF alone by phase separation in a chloroform-cyclohexane system while it was easy to microencapsulate $(KF-{\beta}-CyD)$ solid dispersion system. For the microcapsules, the release test was performed in the first fluid (pH 1.2) and the second fluid (pH 6.8) of K.P.V disintegration medium at $37^{\circ}C$. The release of KF from $(KF-{\beta}-CyD)$ solid dispersion microcapsules (1:1 core wall ratio) was more sustained than that from KF microcapsules, and followed zero-order kinetics. Especially, solid dispersion microcapsules showed pH-independent release patterns with higher wall to core ratio (1:1 w/w).

  • PDF

Development of Sustained Release Microcapsules Containing Ion Exchange Resin-Dextromethorphan Hydrobromide Complex (이온교환수지 - 브롬화수소산덱스트로메토르판 복합체의 서방성 마이크로캅셀 개발에 관한 연구)

  • Kim, Chong-Kook;Hwang, Su-Won;Hwang, Sung-Joo;Lah, Woon-Lyong
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 1989
  • In order to develop a pediatric liquid preparation with sustained release properties, dextromethorphan hydrobromide (DEXT) was complexed with strong cation exchange resin (CG 120) and the-complex was coated with Eudragit RS using a phase separation method by non-solvent addition. The effect of pH, ionic strength of the release medium and drug/resin ratio on the release rate of DEXT was studied. The release rate of free drug from the uncoated complex, and coated complexes with 9.5 and 18.5% Eudragit RS in artificial gastric juice were measured. The release rate from the uncoated complex was faster with higher pH, higher ionic strength of the release medium and higher drug/resin ratio. The release rate from the coated complex could be controlled by the amount of coating material, and the surface after release did not rupture into.

  • PDF

The Preparation of Controlled-Release Microcapsules for Captopril and Their Dissolution Characteristics (제어 방출협 캅토프릴 마이크로캅셀의 제조 및 용출 특성)

  • Choi, Hyun-Soon;Ge, Jiang;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The captopril microcapsules were prepared and were investigated by measuring their size distribution using Scanning Electron Microscopy(SEM) and dissolution of captopril. Cetyl alcohol microcapsules prepared by emulsion melted-cooled method with various ratios of drug to cetyl alcohol were spherical and uniform. The release rate of cetyl alcohol microcapsules was decreased proportionally as the content of cetyl alcohol increased but, the particle size of microcapsules was increased. The surface of cetyl alcohol microcapsules was comparatively rough as drug content increased. Pellet type microcapsules were prepared using fluidized-bed coating system by spraying captopril solution on nonpareil-seeds followed by applying $Eudragit^{\circledR}$ RS solution containing propylene glycol as a plasticizer. The release rate of drug from pellet type microcapsules decreased as the content of $Eudragit^{\circledR}$ RS increased.

  • PDF

The Effect of Sodium Alginate of Osmotic Pellet on Drug Release (알긴산 나트륨의 코팅이 삼투정 펠렛의 약물방출에 미치는 영향)

  • Youn, Ju-Yong;Ku, Jeong;Lee, Soo-Young;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2008
  • Osmotic pellet, which consisted of water-swellable seed layer, drug layer, and porous membrane layer, has been widely utilized in oral drug delivery system. In this work, we describe the preparation of osmotic pellet with nifedipine as model drug and a mixture of cellulose acetate (CA) and Eudragit RS as membrane layer, and then examined the drug release behavior on the variation of the thickness change of membrane layer (CA and Eudragit RS) and release media. Furthermore, we examined the nifedipine release behavior using sodium alginate as a potential membrane candidate. Osmotic pellet was obtained in the quantitative yield by fluidized bed coater. Osmotic pellet exhibited the round morphology and the size ranging $1500{\sim}1700{\mu}m$ in SEM. The nifedipine release decreased as the thickness of membrane layer (CA and Eudragit RS) increased. In addition, it observed that there is difference of release amount in between intestinal juice (pH 6.8) and gastric juice (pH 1.2). In the case of osmotic pellet coated with sodium alginate, nifedipine release behavior depended on the crosslinking of sodium alginate layer. In conclusion, we found that various membrane layers could control the release amount of nifedipine.

Formulation and Preparation of Sustained Release Pellet for Alfuzosin HCI Using Fluid-bed coater (유동층 코팅기를 이용한 염산알푸조신의 서방형 과립 설계 및 제조)

  • Na, Jin-Sang;Yoon, Yang-No;Seo, Hui;Jeong, Sang-Young;Park, Eun-Seok;Hwan, Sung-Joo;Shin, Byung-Cheol;Kim, Sung-Hoon;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • Alfuzosin, an Alphal-adrenoceptor antagonist is used for the treatment of patients with voiding and in a lesser extent storage lower urinary tract symptoms (LUTS) associated to benign prostatic hyperplasia (BPH). The objective of this study was to formulate sustained release alfuzosin HCl granules and assess their formulation variables. The $Eudragit^{(R)}$ as a polymer, sustained release membrane, and dibutyl sebacate (DBS) as a plasticizer were used. Multi-coated alfuzosin HCl delivery systems composed of sugar sphere, various excipients, $Eudragit^{(R)}$ and HPMC (hydroxy propyl methyl cellulose), Cellulose Acetate were prepared by fluid-bed coater. Membrane layer were used $Eudragit^{(R)}$ RS PO and NE 30D. And the alfuzosin HCl coated beads were coated immediate release drug layer for initial burst. Its dissolution test was carried out compared to conventional products ($XATRAL^{(R)}$ XL). The release rate of drug from coated beads was higher than that from $XATRAL^{(R)}$ XL in pH 6.8.

Preparation of Prolonged Release Clarithromycin Microparticles for Oral Use and Their In Vitro Evaluation

  • Genc, Lutfi;Demirel, Muzeyyen;Yazan, Yasemin
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.921-927
    • /
    • 2006
  • Prolonged release micro particles of clarithromycin (CL) were prepared using Eudragit RL 100 and RS 100 by spray-drying and casting-drying techniques. For the characterization of those microparticles, preparation yield, particle size distribution, X-ray diffraction, thermal behavior, active agent content and in vitro dissolution from the microparticles were performed. HPLC was used for the assay of clarithromycin and the assay method was validated. All the formulations obtained showed prolonged release when compared to pure clarithromycin. Microparticles prepared by spray-drying method had a slower release compared to those of casting drying method. Spray-drying method seems to be a more suitable method to prepare microparticles for prolongation in release.