• Title/Summary/Keyword: Euclidean Voronoi diagram

Search Result 15, Processing Time 0.022 seconds

Topology Representation for the Voronoi Diagram of 3D Spheres

  • Cho, Young-Song;Kim, Dong-Uk;Kim, Deok-Soo
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 2005
  • Euclidean Voronoi diagram of spheres in 3-dimensional space has not been explored as much as it deserves even though it has significant potential impacts on diverse applications in both science and engineering. In addition, studies on the data structure for its topology have not been reported yet. Presented in this, paper is the topological representation for Euclidean Voronoi diagram of spheres which is a typical non-manifold model. The proposed representation is a variation of radial edge data structure capable of dealing with the topological characteristics of Euclidean Voronoi diagram of spheres distinguished from those of a general non-manifold model and Euclidean Voronoi diagram of points. Various topological queries for the spatial reasoning on the representation are also presented as a sequence of adjacency relationships among topological entities. The time and storage complexities of the proposed representation are analyzed.

Edge Tracing Algorithm for Computation of Euclidean Voronoi Diagram for Protein and its Applications (3차원에서 단백질의 보로노이 다이아그램 계산을 위한 모서리추적 알고리즘 및 응용)

  • Jo, Yeong-Song;Kim, Dong-Uk;Jo, Cheol-Hyeong;Kim, Deok-Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.842-847
    • /
    • 2005
  • Although there are many applications of Euclidean Voronoi diagram for spheres in a 3D space in various disciplines from sciences and engineering, it has not been studied as much as it deserves. In this paper, we present an edge-tracing algorithm to compute the Euclidean Voronoi diagram of 3-dimensional spheres in O(mn) in the worst-case, where m is the number of edges of Voronoi diagram and n is the number of spheres. After building blocks for the algorithm, we show an example of Voronoi diagram for atoms using actual protein data and discuss its applications for protein analysis.

  • PDF

Edge-flipping algorithm for computing the circle set Voronoi diagram (원 집합의 보로노이 다이어그램을 구하는 모서리 플립 알고리듬)

  • Kim Donguk;Kim Deok-Soo;Sugihara Kokichi
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.467-472
    • /
    • 2002
  • Presented in this paper is an algorithm to compute the Voronoi diagram of a circle set from the Voronoi diagram of a point set. The circles are located in Euclidean plane, the radii of the circles are non-negative and not necessarily equal, and the circles are allowed to intersect each other. The idea of the algorithm is to use the topology of the point set Voronoi diagram as a seed so that the correct topology of the circle set Voronoi diagram can be obtained through a number of edge flipping operations. Then, the geometries of the Voronoi edges of the circle set Voronoi diagram are computed. The main advantages of the proposed algorithm are in its robustness, speed, and the simplicity in its concept as well as implementation.

  • PDF

The Computation of the Voronoi Diagram of a Circle Set Using the Voronoi Diagram of a Point Set: I. Topology (점 집합의 보로노이 다이어그램을 이용한 원 집합의 보로노이 다이어그램의 계산: I. 위상학적 측면)

  • ;;;Kokichi Sugihara
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 2001
  • An efficient and robust algorithm to compute the exact Voronoi diagram of a circle set is presented. The circles are located in a two dimensional Euclidean space, the radii of the circles are non-negative and not necessarily equal, and the circles are allowed to intersect each other. The idea of the algorithm is to use the topology of the point set Voronoi diagram as a seed so that the correct topology of the circle set Voronoi diagram can be obtained through a number of edge flipping operations. Then, the geometries of the Voronoi edges of the circle set Voronoi diagram are computed. In particular, this paper discusses the topological aspect of the algorithm, and the following paper discusses the geometrical aspect. The main advantages of the proposed algorithm are in its robustness, speed, and the simplicity in its concept as well as implementation. Since the algorithm is based on the result of the point set Voronoi diagram and the flipping operation is the only topological operation, the algorithm is always as stable as the Voronoi diagram construction algorithm of a point set.

  • PDF

Robust Construction of Voronoi Diagram of Circles by Region-Expansion Algorithm (영역 확장법을 통한 평면에서 원들의 보로노이 다이어그램의 강건한 계산)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.52-60
    • /
    • 2019
  • This paper presents a numerically robust algorithm to construct a Voronoi diagram of circles in the plane. The circles are allowed to have intersections among them, but one circle cannot fully contain another circle. The Voronoi diagram is a tessellation of the plane into Voronoi regions of given circles. Each circle has its Voronoi region which is defined by a set of points in the plane closer to the circle than any other circles. The distance from a point p to a circle $c_i$ of center $p_i$ and radius $r_i$ is ${\parallel}p-p_i{\parallel}-r_i$, which is the closest Euclidean distance from p to the circle boundary. The proposed algorithm first constructs the point Voronoi diagram of centers of given circles, then it enlarges each point to the circle and expands its Voronoi region accordingly. This region-expansion process is done by local modifications and after completing this process for the whole circles the desired circle Voronoi diagram can be obtained. The proposed algorithm is numerically robust and we provide with a few examples to show its robustness. The algorithm runs in $O(n^2)$ time in the worst case and O(n) time on average where n is the number of the circles. The experiment shows that the region-expansion algorithm is robust and runs fast with strong linear time behavior.

Improved Euclidean transform method using Voronoi diagram (보로노이 다이어그램에 기반한 개선된 유클리디언 거리 변환 방법)

  • Jang Seok Hwan;Park Yong Sup;Kim Whoi Yul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1686-1691
    • /
    • 2004
  • In this paper, we present an improved method to calculate Euclidean distance transform based on Guan's method. Compared to the conventional method, Euclidean distance can be computed faster using Guan's method when the number of feature pixels is small; however, overall computational cost increases proportional to the number of feature pixels in an image. To overcome this problem, we divide feature pixels into two groups: boundary feature pixels (BFPs) and non-boundary feature pixels (NFPs). Here BFPs are defined as those in the 4-neighborhood of foreground pixels. Then, only BFPs are used to calculate the Voronoi diagram resulting in a Euclidean distance map. Experimental results indicate that the proposed method takes 40 Percent less computing time on average than Guan's method. To prove the performance of the proposed method, the computing time of Euclidean distance map by proposed method is compared with the computing time of Guan's method in 16 images that are binary and the size of 512${\times}$512.

$\beta$-Shape and $\beta$-Complex for the Structure Analysis of Molecules

  • Seo, Jeong-Yeon;Kim, Dong-Uk;Cho, Young-Song;Ryu, Joong-Hyun;Kim, Deok-Soo
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.91-101
    • /
    • 2007
  • To understand the structure of molecules, various computational methodologies have been extensively investigated such as the Voronoi diagram of the centers of atoms in molecule and the power diagram for the weighted points where the weights are related to the radii of the atoms. For a more improved efficiency, constructs like an $\alpha$-shape or a weighted $\alpha$-shape have been developed and used frequently in a systematic analysis of the morphology of molecules. However, it has been recently shown that $\alpha$-shapes and weighted $\alpha$-shapes lack the fidelity to Euclidean distance for molecules with polysized spherical atoms. We present the theory as well as algorithms of $\beta$-shape and $\beta$-complex in $\mathbb{R}^3$ which reflects the size difference among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and therefore will have a significant impact on applications based on particles, in particular in molecular biology. The theory will be equivalently useful for other application areas such as computer graphics, geometric modeling, chemistry, physics, and material science.

전산 기하학과 Voronoi도표

  • 좌경용
    • 전기의세계
    • /
    • v.32 no.6
    • /
    • pp.325-330
    • /
    • 1983
  • 본 기술해설에서는 전산 기하학에서 다루는 많은 기본 문제들 중에서도 특히 평면상에 놓여있는 n개의 점들에 대한 여러문제, 예를 들면 Euclidean Minimum Spanning Tree을 구하는 문제, 점 사이의 거리가 가장 가까운 두점(two closest point pair)을 찾는 문제, Convex hull을 찾는 문제 등을 효율적으로 처리할 수 있는 Voronoi 도표 (Voronoi Diagram)라는 기본적인 structure에 대해 설명을 하고 이 Voronoi 도표가 위에서 언급한 문제를 해결하는데 이용됨을 살펴보고자 한다.

  • PDF

Using Voronoi Diagram and Power Diagram in Application Problems (응용문제에서 보로노이 다이어그램과 파워 다이어그램의 사용성 비교)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • The Voronoi diagram of spheres and power diagram have been known as powerful tools to analyze spatial characteristics of weighted points, and these structures have variety range of applications including molecular spatial structure analysis, location based optimization, architectural design, etc. Due to the fact that both diagrams are based on different distance metrics, one has better usability than another depending on application problems. In this paper, we compare these diagrams in various situations from the user's viewpoint, and show the Voronoi diagram of spheres is more effective in the problems based on the Euclidean distance metric such as nearest neighbor search, path bottleneck locating, and internal void finding.

Fixed Decision Delay Detector for Intersymbol Interference Channel (심볼간 간섭 채널을 위한 고정 지연 신호 검출기)

  • Taehyun, Jeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.39-45
    • /
    • 2004
  • A design method is proposed for the sequence detection with fixed decision delay with less hardware complexity using the concept of the Voronoi diagram and its dual, the Delaunay tessellation. This detector design is based on the Fixed Delay Tree Search (FDTS) detection. The FDTS is a computationally efficient sequence detection algerian and has been shown to achieve near-optimal performance in the severe Intersymbol Interference (ISI) channels when combined with decision feedback equalization and the appropriate channel coding. In this approach, utilizing the information contained in the Voronoi diagram or equivalently the Delaunay tessellation, the relative location of the detector input sequence in the multi-dimensional Euclidean space is found without any computational redundancy, which leads to a reduced complexity implementation of the detector.