• Title/Summary/Keyword: Eu:Y2O3

Search Result 471, Processing Time 0.024 seconds

Synthesis and Luminescent Characteristics of Sr4Al14O25 Phosphor (Sr4Al14O25 형광체의 합성과 발광특성)

  • Han Sang Hyuk;Kim Young Jin
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.529-534
    • /
    • 2004
  • $Sr_{4}Al_{14}O_{25}$ was synthesized by solid state reaction with flux. $H_{3}BO_3$ was used to synthesize $SrO-Al_{2}O_{3}$ phosphor system as a flux. The effect of doping system such as Eu+Dy, Eu, and Ce on the luminescent properties of $Sr_{4}Al_{14}O_{25}$ was investigated. Both PL spectra of $Sr_{4}Al_{14}O_{25}$:Eu and $Sr_{4}Al_{14}O_{25}$:Eu+Dy excited at 390 nm showed greenish-blue emission at about 490 nm, while the emission wavelength was shifted to 400 nm by doping Ce. The reduction of $Eu^{3+}$ ions to $Eu^{2+}$ could be accomplished by the annealing process under $N_{2}^{+}$ vacuum atmosphere, and attributed to the emission at 490 nm. It is verified that $Sr_{4}Al_{14}O_{25}$:Eu phosphor is suitable for white LEDs became of a broad absorption band peaking at 390 nm.

Hydrothermal Synthesis of Ultra-fine SrAl2O4:Eu Powders and Investigation of their Photoluminescent Characteristics (수열합성법에 의한 SrAl2O4:Eu 초미세 분말 합성공정 및 형광 특성)

  • 박우식;김선재;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.370-374
    • /
    • 2004
  • Sr$_{l-x}$Ba$_{x}$Al$_2$O$_4$:Eu (x = 0, 0.1, 0.2, and 0.3 mol) phosphor was synthesized by the hydrothermal method and its properties of photoluminescence and long-afterglow were investigated. The mixtures of Sr(NO$_3$)$_2$, Al(NO$_3$)$_3$9$H_2O$, and Eu(NO$_3$)$_3$$.$6$H_2O$ salts dissolved in distilled water, after controlling their pH by NH$_4$OH solution, put into an Autoclave reactor with high temperature and pressure to react. Such synthesized SrAl$_2$O$_4$:Eu powders showed homogeneous and ultra-fine particles of sub-micron size. In order to have the photoluminescence characteristic, powders were heat treated at 1100 -140$0^{\circ}C$ for 2 h in Ar/H$_2$ reduction atmosphere. Photoluminescence spectra showed a excitation along the wide wavelength of 250 ∼ 450 nm, and broaden emission with maxima peak at 520 nm. Also, it showed a good long afterglow with decaying over 1000 sec after excitation illumination for 10 min. In addition, the microstructure and crystal structure of SrAl$_2$O$_4$:Eu powders were investigated by an SEM and XRD, respectively.

Luminescent Characteristics and Synthesis of Y3Al5O12:Eu3+ Red Phosphors (Y3Al5O12:Eu3+ 적색 형광체의 제조와 발광특성)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.425-428
    • /
    • 2022
  • In this study, Y3Al5O12:Eu3+ red phosphors were synthesized at different temperatures using a solid state reaction method. The crystal structures, surface and optical properties of the Y3Al5O12:Eu3+ red phosphors were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and photoluminescence (PL) analyses. From XRD results, the crystal structure of the Y3Al5O12:Eu3+ red phosphors was determined to be cubic. The maximum emission spectra were observed for the Y3Al5O12:Eu3+ red phosphor prepared by annealing for 4h at 1,700 ℃. The 565~590 nm photoluminescent spectra of the Y3Al5O12:Eu3+ red phosphors is associated with the 5D07F2 magnetic dipole transition of the Eu3+ ions. The intensity of the photoluminescent spectra in the red phosphors is more dominant for the magnetic dipole transition than the electric dipole transition with increasing annealing temperature. The International Commission on Illumination (CIE) coordinates of Y3Al5O12:Eu3+ red phosphors prepared by 1,700 ℃ annealing temperature are X = 0.5994, Y = 0.3647.

Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material

  • Jung, Kyeong Youl;Han, Jang Hoon;Kim, Dae Sung;Choi, Byung-Ki;Kang, Wkang-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.461-472
    • /
    • 2018
  • $Gd_2O_3:Eu/Bi$ nanoparticles were synthesized via spray pyrolysis and applied for the preparation of a luminescent pearl pigment as an anti-counterfeiting material. The luminescence properties were optimized by changing the $Eu^{3+}$ and $Bi^{3+}$ concentration. Ethylene glycol was used as an organic additive to prepare the $Gd_2O_3:Eu/Bi$ nanoparticles. The highest emission intensity was achieved when the total dopant content was 10.0 at.% and the mole fraction of Bi was 0.1. The concentration quenching was mainly due to dipole-dipole interactions between the same activators, and the critical distances were 9.0 and $19.6{\AA}$ for $Eu^{3+}$ and $Bi^{3+}$, respectively. The prepared $Gd_2O_3:Eu/Bi$ powder exhibited an average size of approximately 82.5 nm and a narrow size distribution. Finally, the $Gd_2O_3:Eu/Bi$ nanophosphor coated on the surface of the pearl pigment was confirmed to have good red emission under irradiation from a portable ultraviolet light-emitting diode lamp (365 nm).

Eu3+ 몰 비 변화에 따른 La2MoO6:Eu3+ 형광체의 광학 특성

  • Kim, Ga-Yeon;Kim, Mun-Hwan;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.154-154
    • /
    • 2015
  • 최근에 백색 발광 소자와 조명 장치에 응용하기 위하여 희토류 이온이 도핑된 산화물 형광체의 제조에 많은 노력이 경주되고 있다. 본 연구에서는 $Eu^{3+}$ 이온이 첨가된 $La_2MoO_6$ 형광체를 고상반응법을 사용하여 합성하였다. $La_2MoO_6:Eu^{3+}$ 형광체 분말 시료는 활성체 $Eu^{3+}$ 이온의 함량을 0, 0.01, 0.05, 0.10, 0.15, 0.2 mol로 변화시켜 볼밀과 건조 작업을 거쳐 $400^{\circ}C$에서 3시간 동안 하소 공정과 $1100^{\circ}C$에서 5시간 동안 소결 공정을 수행하여 합성하였다. 흡광 스펙트럼의 경우에, 양이온 $Eu^{3+}$와 음이온 $O^{2-}$ 사이의 전하 전달 밴드에 의해 250~370 nm 영역에 폭넓게 발생한 흡광 신호와 370~450 nm 파장 영역에 발생한 다수의 약한 $Eu^{3+}$ 이온의 흡광 스펙트럼으로 구성되었다. 발광 스펙트럼의 경우에, 파장 333 nm로 여기시켰을 때, 620 nm에서 최대 세기를 갖는 적색 발광 신호, 593 nm의 주황색 발광 스펙트럼과 704 nm의 적색 발광 스펙트럼이 관측되었다. 620 nm에서 관측된 적색 발광 신호의 세기는 활성체 이온 $Eu^{3+}$의 함량이 0.20 mol일 때 최대이었다.

  • PDF

Size Dependence of the Photo- and Cathodo-luminescence of Y2O2S:Eu Phosphors

  • Sung, Hye-Jin;Ko, Ki-Young;Kim, Hyun Soo;Kweon, Seok-Soon;Park, Jong-Yun;Do, Young-Rak;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.841-846
    • /
    • 2006
  • $Y_2O_2S$:Eu phosphors were synthesized via solid-state reactions. $Y_2O_2S$:Eu phosphor particles of various sizes were obtained by varying the firing temperature and firing time. The photoluminescence properties of these $Y_2O_2S$:Eu phosphors were examined. In addition, the cathodoluminescence properties of the $Y_2O_2S$:Eu phosphors were examined for applied voltages of 3-8 kV. The relationship between the luminescence intensity and particle size of the$Y_2O_2S$:Eu phosphors was investigated. The photoluminescence and cathodoluminescence of the $Y_2O_2S$:Eu phosphors are affected differently by variations in particle size.

The particle properties and luminescence properties of Gd2O3:Eu using solution-combustion with various Eu content were analysis (X선 검출기를 위해 특수용매 액상법으로 합성한 Gd2O3:Eu의 Europium(Eu) 함량에 따른 입자특성과 발광특성의 분석)

  • Kim, Sung-Hyun;Kim, Young-Bin;Jung, Suk-Hee;Kim, Min-Woo;Oh, Kyung-Min;Park, Ji-Gun
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In this study, the particle properties and luminescence properties of Gd2O3 nano powder with various Eu content were studied. Gd2O3:Eu nano powder was fabricated using special solvent which mixed the alcohol and the distilled water at specific ratio. This solvent by the solution method showed short fabrication time because solution time of Gd and Eu was reduced. From this experiment with Gd2O3:Eu, the particle properties og nano powder phosphor way analysed using SEM (scanning electron microscope) and EDX(Energy Dispersive X-ray). Also the luminescence properties of nano powder was measured using PL(Photoluminescence) and CL (CathodeLuminescence). The size of powder was 30nm~40nm. The magnitude of powder showed the best peak at 620nm. Among 1,3,5wt% of Eu content, the more Eu content was added in powder, the more photons wre generated. Also it shows luminescence efficiency was improved adding 5% of Eu content.

  • PDF

Optical characteristics of $Gd_2O_3$:Eu phosphor film for x-ray imaging detector (X선 영상 검출기 적용을 위한 $Gd_2O_3$:Eu 필름의 X선 발광 특성에 관한 연구)

  • Kim, So-Yeong;Kang, Sang-Sik;Cha, Byung-Youl;Son, Dae-Woong;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.344-344
    • /
    • 2007
  • 본 연구에서는 X선 영상 검출기로의 적용을 위하여 $Gd_2O_3$:Eu 형광체 필름을 제작하여 X선에 대한 발광 특성을 분석하였다. $Gd_2O_3$:Eu는 저온 액상법을 이용하여 분말 형태로 제조한 후 Particle-in-binder (PIB)으로 필름 형태로 제작한 후, 도핑된 Europium(Eu)의 농도와 소결 온도에 따른 X선에 대한 발광 특성을 분석하였다. Photolumimescence (PL) spectrum에서 611nm에서 가장 높은 발광 효율을 나타내었으며, 입자의 크기가 줄어듦에 따라 610nm에서 새로운 peak가 형성 되었다. 또한 Eu의 농도에 따라서 발광 강도의 차이가 관찰되었는데, 5wt%의 도핑 농도에서 가장 높은 발광 효율을 나타냈으며, 도핑 농도에 매우 의존적인 결과를 나타냈다. 소결 온도에 따른 발광 특성 분석에서, $500^{\circ}C$에서 소결하였을 때는 623nm에서 강한 peak를 나타내는 단사정계상의 발광 peak는 거의 관찰되지 않았으나 소결 온도가 $700^{\circ}C$$900^{\circ}C$에서는 peak가 확인되었다. 이를 통해 $Gd_2O_3$ 모체가 대부분 입방 대칭 구조를 가지는 $Gd_2O_3$:Eu가 합성되었음을 확인할 수 있었다. 또한 소결 온도에 따른 발광 강도를 분석한 결과 $900^{\circ}C$에서 소결하였을 때 가장 높은 발광 강도를 나타냈다. Luminescent decay time 측정 결과에서 도핑된 Eu의 농도가 커질수록 Luminescent decay time이 짧아짐을 확인할 수 있었다.

  • PDF

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

Gd$_2O_3$:Eu phosphor particles with spherical and filled morphology

  • Roh, Hyun-Sook;Kang, Yun-Chan;Park, Hee-Dong;Park, Seung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.253-256
    • /
    • 2002
  • $Gd_2O_3$:Eu phosphor particles were prepared by largescale ultrasonic spray pyrolysis process. The morphological control of $Gd_2O_3$:Eu particles in spray pyrolysis was performed by adding polymeric precursors into spray solution containing nitrate salts. The effect of composition and amount of polymeric precursors on the morphology, crystallinity, and photoluminescence characteristics of $Gd_2O_3$:Eu particles was investigated. The influence of chain length of PEG on the morphology and photoluminescence intensity was investigated. $Gd_2O_3$:Eu particles prepared from aqueous solution containing no polymeric precursors had a hollow structure and rough surfaces after annealing process. The phosphor particles prepared from solution containing 0.1M CA and 0.lM PEG with high molecular weight as 1,500 had a spherical and filled morphology and the highest photoluminescence intensity, which was 48% higher than that of the $Y_2O_3$:Eu commercial product.

  • PDF