References
- Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, "Encoding Molecular Information in Plasmonic Nanostructures for Anti-Counterfeiting Applications," Nanoscale, 6 [1] 282-88 (2014). https://doi.org/10.1039/C3NR04375D
- K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, and H. Lin, "Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting," Angew. Chem., Int. Ed., 55 [25] 7231-35 (2016). https://doi.org/10.1002/anie.201602445
- L. Li, "Technology Designed to Combat Fakes in the Global Supply Chain," Business Horizons, 56 [2] 167-77 (2013). https://doi.org/10.1016/j.bushor.2012.11.010
- S. L. Sonawane and S. K. Asha, "Fluorescent Polystyrene Microbeads as Invisible Security Ink and Optical Vapor Sensor for 4-Nitrotoluene," ACS Appl. Mater. Interfaces, 8 [16] 10590-99 (2016). https://doi.org/10.1021/acsami.5b12325
- M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, "Three-Dimensional Quick Response Code Based on Inkjet Printing of Upconversion Fluorescent Nanoparticles for Drug Anti-Counterfeiting," Nanoscale, 8 [19] 10096-104 (2016). https://doi.org/10.1039/C6NR01353H
- H. Kang, J. W. Lee, and Y. Nam, "Inkjet-Printed Multiwavelength Thermoplasmonic Images for Anticounterfeiting Applications," ACS Appl. Mater. Interfaces, 10 [7] 6764-71 (2018). https://doi.org/10.1021/acsami.7b19342
- T. Sun, B. Xu, B. Chen, X. Chen, M. Li, P. Shi, and F. Wang, "Anti-Counterfeiting Patterns Encrypted with Multi-Mode Luminescent Nanotaggants," Nanoscale, 9 [8] 2701-5 (2017). https://doi.org/10.1039/C6NR09083D
- Y. Liu, K. Ai, and L. Lu, "Designing Lanthanide-Doped Nanocrystals with Both Up- and Down-Conversion Luminescence for Anti-Counterfeiting," Nanoscale, 3 [11] 4804-10 (2011). https://doi.org/10.1039/c1nr10752f
- P. Kumar, J. Dwivedi, and B. K. Gupta, "Highly Luminescent Dual Mode Rare-Earth Nanorod Assisted Multi-Stage Excitable Security Ink for Anti-Counterfeiting Applications," J. Mater. Chem. C, 2 [48] 10468-75 (2014). https://doi.org/10.1039/C4TC02065K
- P. Kumar, S. Singh, and B. K. Gupta, "Future Prospects of Luminescent Nanomaterials Based Security Inks: from Synthesis to Anti-Counterfeiting Applications," Nanoscale, 8 [30] 14297-340 (2016). https://doi.org/10.1039/C5NR06965C
- M. Wang, Z. Huang, Z. Guo, and W. Yang, "Luminescent Metal Clusters/Barium Sulfate Composites for White Light-Emitting Devices and Anti-Counterfeiting Labels," RSC Adv., 8 [6] 2866-71 (2018). https://doi.org/10.1039/C7RA11804J
- F. J. Maile, G. Pfaff, and P. Reynders, "Effect Pigments-Past, Present and Future," Prog. Org. Coat., 54 [3] 150-63 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.003
- B. Mahltig, J. Zhang, L. Wu, D. Darko, M. Wendt, E. Lempa, M. Rabe, and H. Haase, "Effect Pigments for Textile Coating: a Review of the Broad Range of Advantageous Functionalization," J. Coat. Technol. Res., 14 [1] 35-55 (2017). https://doi.org/10.1007/s11998-016-9854-9
-
S. J. Lee, M. S. You, and S. H. Lim, "Formation of Uniform
$TiO_2$ Nanoshell on a-Alumina Nanoplates for Effective Metallic Luster Pigments," Korean J. Chem. Eng., 33 [9] 2732-37 (2016). https://doi.org/10.1007/s11814-016-0106-6 - Y. Wang, M. Liu, Y. Liu, J. Luo, X. Lu, and J. Sun, "A Novel Mica-Titania@Graphene Core-Shell Structured Antistatic Composite Pearlescent Pigment," Dyes Pigm., 136 197-204 (2017). https://doi.org/10.1016/j.dyepig.2016.08.035
-
Q. Gao, X. Wu, and Y. Fan, "Solar Spectral Optical Properties of Rutile
$TiO_2$ Coated Mica-Titania Pigments," Dyes Pigm., 109 90-5 (2014). https://doi.org/10.1016/j.dyepig.2014.04.028 - M. R. Tohidifar, E. Taheri-Nassaj, and P. Alizadeh, "Precursor Content Assessment and its Influence on the Optical Interference of a Nano-Sized Mica-Hematite Pearlescent Pigment," Powder Technol., 204 [2-3] 194-97 (2010). https://doi.org/10.1016/j.powtec.2010.07.021
-
K. Y. Jung, J. C. Lee, D. S. Kim, B.-K. Choi, and W.-J. Kang, "Co-Doping Effect of Monovalent Alkali Metals on Optical Properties of
$CeO_2:Eu$ Nanophosphor Prepared by Spray Pyrolysis and Application for Preparing Pearlescent Pigments with Red Emission," J. Lumin., 192 1313-21 (2017). https://doi.org/10.1016/j.jlumin.2017.09.017 -
A. Saha, S. C. Mohanta, K. Deka, P. Deb, and P. S. Devi, "Surface-Engineered Multifunctional
$Eu:Gd_2O_3$ Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications," ACS Appl. Mater. Interfaces, 9 [4] 4126-41 (2017). https://doi.org/10.1021/acsami.6b12804 - W.-N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro, and K. Okuyama, "Correlation between Crystallite/Particle Size and Photoluminescence Properties of Submicronmeter Phosphors," Chem. Mater., 19 [7] 1723-30 (2007). https://doi.org/10.1021/cm062887p
-
T. Watanabe, Y. Iso, and T. Isobe, "Synthesis of
$Y_2O_3:Bi^{3+},Eu^{3+}$ Nanosheets from Layered Yttrium Hydroxide Precursor and Their Photoluminescence Properties," RSC Adv., 7 [23] 14107-13 (2017). https://doi.org/10.1039/C7RA01114H -
X. T. Wei, Y. H. Chen, X. R. Cheng, M. Yin, and W. Xu, "Photoluminescence Characteristics and Energy Transfer between
$Bi^{3+}$ and$Eu^{3+}$ in$Gd_2O_3:Eu^{3+},Bi^{3+}$ Nanophosphors," Appl. Phys. B, 99 [4] 763-68 (2010). https://doi.org/10.1007/s00340-010-3971-4 -
W. Xu, H. Song, D. Yan, H. Zhu, Y. Wang, S. Xu, X. Bai, B. Dong, and Y. Liu, "
$YVO_4:Eu^{3+},Bi^{3+}$ UV to Visible Conversion Nano-Films Used for Organic Photovoltaic Solar Cells," J. Mater. Chem., 21 [33] 12331-36 (2011). https://doi.org/10.1039/c1jm11761k -
T. Orihashi, T. Nakamura, and S. Adachi, "Resonant Energy Transfer in (
$Eu^{3+},Bi^{3+}$ )-Codoped$CaZrO_3$ Red-Emitting Phosphor," RSC Adv., 6 [70] 66130-39 (2016). https://doi.org/10.1039/C6RA13429G -
H. Xiao, P. Li, F. Jia, and L. Zhang, "General Nonaqueous Sol-Gel Synthesis of Nanostructured
$Sm_2O_3$ ,$Gd_2O_3$ ,$Dy_2O_3$ , and$Gd_2O_3:Eu^{3+}$ Phosphor," J. Phys. Chem. C, 113 [50] 21034-41 (2009). https://doi.org/10.1021/jp905538k -
H. Chen, J. Zhang, X. Wang, S. Gao, M. Zhang, Y. Ma, Q. Dai, D. Li, S. Kan, and G. Zou, "The Effect of the Size of Raw
$Gd(OH)_3$ Precipitation on the Crystal Structure and PL Properties of$Gd_2O_3:Eu$ ," J. Colloid Interface Sci., 297 [1] 130-33 (2006). https://doi.org/10.1016/j.jcis.2005.10.018 -
X. Ye, W. Gao, L. Xia, H. Nie, and W. Zhuang, "A Modified Solution Combustion Method to Superfine
$Gd_2O_3:Eu^{3+}$ Phosphor: Preparation, Phase Transition and Optical Properties," J. Rare Earths, 28 [3] 345-50 (2010). https://doi.org/10.1016/S1002-0721(09)60109-5 -
B. H. Min and K. Y. Jung, "Synthesis of Luminescence Characteristics of Fine-Sized
$Ba_2Si_6O_{12}N_2:Eu$ Green Phosphor through Spray Pyrolysis Using$TEOS/Si_3N_4$ Mixed Precursors," RSC Adv., 7 [71] 44759-65 (2017). https://doi.org/10.1039/C7RA08620B -
J. S. Cho, K. Y. Jung, and Y. C. Kang, "Yolk-Shell Structured
$Gd_2O_3:Eu^{3+}$ Phosphor Prepared by Spray Pyrolysis: the Effect of Preparation Conditions on Microstructure and Luminescence Properties," Phys. Chem. Chem. Phys., 17 [2] 1325-31 (2015). https://doi.org/10.1039/C4CP03477E - M. Borlaf, R. Kubrin, V. Aseev, A. Y. Petrov, N. Nikonorov, and T. Graule, "Deep Submicrometer YAG:Ce Phosphor Particles with High Quantum Yield Prepared by Flame Spray Synthesis," J. Am. Ceram. Soc., 100 [8] 3784-93 (2017). https://doi.org/10.1111/jace.14905
-
K. Y. Jung, C. H. Lee, and Y. C. Kang, "Effect of Surface Area and Crystallite Size on Luminescent Intensity of
$Y_2O_3:Eu$ Phosphor Prepared by Spray Pyrolysis," Mater. Lett., 59 [19-20] 2451-56 (2005). https://doi.org/10.1016/j.matlet.2005.03.017 -
C. H. Lee, K. Y. Jung, J. G. Choi, and Y. C. Kang, "Nano-Sized
$Y_2O_3:Eu$ Phosphor Particles Prepared by Spray Pyrolysis," Mater. Sci. Eng., B, 116 [1] 59-63 (2005). https://doi.org/10.1016/j.mseb.2004.09.016 -
B. H. Min, J. C. Lee, K. Y. Jung, D. S. Kim, B.-K. Choi, and W.-J. Kang, "An Aerosol Synthesis of
$CeO_2:Eu^{3+}/Na^+$ Red Nanophosphor with Enhanced Photoluminescence," RSC Adv., 6 [84] 81203-10 (2016). https://doi.org/10.1039/C6RA16551F -
R. G. A. Kumar, S. Hata, K.-I. Ikeda, and K. G. Gopchandran, "Luminescence Dynamics and Concentration Quenching in
$Gd_{2-x}Eu_xO_3$ Nanophosphor," Ceram. Int., 41 [4] 6037-50 (2015). https://doi.org/10.1016/j.ceramint.2015.01.051 -
O. Meza, E. G. Villabona-Leal, L. A. Diaz-Torres, H. Desirena, J. L. Rodriguez-Lopez, and E. Perez, "Luminescence Concentration Quenching Mechanism in
$Gd_2O_3:Eu^{3+}$ ," J. Phys. Chem. A, 118 [8] 1390-96 (2014). https://doi.org/10.1021/jp4119502 -
M. Buijs, A. Meyerink, and G. Blasse, "Energy Transfer between
$Eu^{3+}$ Ions in a Lattice with Two Different Crystallographic Sites:$Y_2O_3:Eu^{3+}$ ,$Gd_2O_3:Eu^{3+}$ and$Eu_2O_3$ ," J. Lumin., 37 9-20 (1987). https://doi.org/10.1016/0022-2313(87)90177-3
Cited by
- Photoluminescence, thermoluminescence, and cathodoluminescence of optimized cubic Gd2O3:Bi phosphor powder vol.38, pp.6, 2020, https://doi.org/10.1116/6.0000567
- Y2O3:Eu3+ Nanophosphor-Coated Mica or TiO2/Mica as Red-Emitting Pearl Pigment: Coating Factors, Luminescent and Gloss Properties vol.11, pp.10, 2018, https://doi.org/10.3390/app11104365