DOI QR코드

DOI QR Code

Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material

  • Received : 2018.06.07
  • Accepted : 2018.08.23
  • Published : 2018.09.30

Abstract

$Gd_2O_3:Eu/Bi$ nanoparticles were synthesized via spray pyrolysis and applied for the preparation of a luminescent pearl pigment as an anti-counterfeiting material. The luminescence properties were optimized by changing the $Eu^{3+}$ and $Bi^{3+}$ concentration. Ethylene glycol was used as an organic additive to prepare the $Gd_2O_3:Eu/Bi$ nanoparticles. The highest emission intensity was achieved when the total dopant content was 10.0 at.% and the mole fraction of Bi was 0.1. The concentration quenching was mainly due to dipole-dipole interactions between the same activators, and the critical distances were 9.0 and $19.6{\AA}$ for $Eu^{3+}$ and $Bi^{3+}$, respectively. The prepared $Gd_2O_3:Eu/Bi$ powder exhibited an average size of approximately 82.5 nm and a narrow size distribution. Finally, the $Gd_2O_3:Eu/Bi$ nanophosphor coated on the surface of the pearl pigment was confirmed to have good red emission under irradiation from a portable ultraviolet light-emitting diode lamp (365 nm).

Keywords

References

  1. Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, "Encoding Molecular Information in Plasmonic Nanostructures for Anti-Counterfeiting Applications," Nanoscale, 6 [1] 282-88 (2014). https://doi.org/10.1039/C3NR04375D
  2. K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, and H. Lin, "Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting," Angew. Chem., Int. Ed., 55 [25] 7231-35 (2016). https://doi.org/10.1002/anie.201602445
  3. L. Li, "Technology Designed to Combat Fakes in the Global Supply Chain," Business Horizons, 56 [2] 167-77 (2013). https://doi.org/10.1016/j.bushor.2012.11.010
  4. S. L. Sonawane and S. K. Asha, "Fluorescent Polystyrene Microbeads as Invisible Security Ink and Optical Vapor Sensor for 4-Nitrotoluene," ACS Appl. Mater. Interfaces, 8 [16] 10590-99 (2016). https://doi.org/10.1021/acsami.5b12325
  5. M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, "Three-Dimensional Quick Response Code Based on Inkjet Printing of Upconversion Fluorescent Nanoparticles for Drug Anti-Counterfeiting," Nanoscale, 8 [19] 10096-104 (2016). https://doi.org/10.1039/C6NR01353H
  6. H. Kang, J. W. Lee, and Y. Nam, "Inkjet-Printed Multiwavelength Thermoplasmonic Images for Anticounterfeiting Applications," ACS Appl. Mater. Interfaces, 10 [7] 6764-71 (2018). https://doi.org/10.1021/acsami.7b19342
  7. T. Sun, B. Xu, B. Chen, X. Chen, M. Li, P. Shi, and F. Wang, "Anti-Counterfeiting Patterns Encrypted with Multi-Mode Luminescent Nanotaggants," Nanoscale, 9 [8] 2701-5 (2017). https://doi.org/10.1039/C6NR09083D
  8. Y. Liu, K. Ai, and L. Lu, "Designing Lanthanide-Doped Nanocrystals with Both Up- and Down-Conversion Luminescence for Anti-Counterfeiting," Nanoscale, 3 [11] 4804-10 (2011). https://doi.org/10.1039/c1nr10752f
  9. P. Kumar, J. Dwivedi, and B. K. Gupta, "Highly Luminescent Dual Mode Rare-Earth Nanorod Assisted Multi-Stage Excitable Security Ink for Anti-Counterfeiting Applications," J. Mater. Chem. C, 2 [48] 10468-75 (2014). https://doi.org/10.1039/C4TC02065K
  10. P. Kumar, S. Singh, and B. K. Gupta, "Future Prospects of Luminescent Nanomaterials Based Security Inks: from Synthesis to Anti-Counterfeiting Applications," Nanoscale, 8 [30] 14297-340 (2016). https://doi.org/10.1039/C5NR06965C
  11. M. Wang, Z. Huang, Z. Guo, and W. Yang, "Luminescent Metal Clusters/Barium Sulfate Composites for White Light-Emitting Devices and Anti-Counterfeiting Labels," RSC Adv., 8 [6] 2866-71 (2018). https://doi.org/10.1039/C7RA11804J
  12. F. J. Maile, G. Pfaff, and P. Reynders, "Effect Pigments-Past, Present and Future," Prog. Org. Coat., 54 [3] 150-63 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.003
  13. B. Mahltig, J. Zhang, L. Wu, D. Darko, M. Wendt, E. Lempa, M. Rabe, and H. Haase, "Effect Pigments for Textile Coating: a Review of the Broad Range of Advantageous Functionalization," J. Coat. Technol. Res., 14 [1] 35-55 (2017). https://doi.org/10.1007/s11998-016-9854-9
  14. S. J. Lee, M. S. You, and S. H. Lim, "Formation of Uniform $TiO_2$ Nanoshell on a-Alumina Nanoplates for Effective Metallic Luster Pigments," Korean J. Chem. Eng., 33 [9] 2732-37 (2016). https://doi.org/10.1007/s11814-016-0106-6
  15. Y. Wang, M. Liu, Y. Liu, J. Luo, X. Lu, and J. Sun, "A Novel Mica-Titania@Graphene Core-Shell Structured Antistatic Composite Pearlescent Pigment," Dyes Pigm., 136 197-204 (2017). https://doi.org/10.1016/j.dyepig.2016.08.035
  16. Q. Gao, X. Wu, and Y. Fan, "Solar Spectral Optical Properties of Rutile $TiO_2$ Coated Mica-Titania Pigments," Dyes Pigm., 109 90-5 (2014). https://doi.org/10.1016/j.dyepig.2014.04.028
  17. M. R. Tohidifar, E. Taheri-Nassaj, and P. Alizadeh, "Precursor Content Assessment and its Influence on the Optical Interference of a Nano-Sized Mica-Hematite Pearlescent Pigment," Powder Technol., 204 [2-3] 194-97 (2010). https://doi.org/10.1016/j.powtec.2010.07.021
  18. K. Y. Jung, J. C. Lee, D. S. Kim, B.-K. Choi, and W.-J. Kang, "Co-Doping Effect of Monovalent Alkali Metals on Optical Properties of $CeO_2:Eu$ Nanophosphor Prepared by Spray Pyrolysis and Application for Preparing Pearlescent Pigments with Red Emission," J. Lumin., 192 1313-21 (2017). https://doi.org/10.1016/j.jlumin.2017.09.017
  19. A. Saha, S. C. Mohanta, K. Deka, P. Deb, and P. S. Devi, "Surface-Engineered Multifunctional $Eu:Gd_2O_3$ Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications," ACS Appl. Mater. Interfaces, 9 [4] 4126-41 (2017). https://doi.org/10.1021/acsami.6b12804
  20. W.-N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro, and K. Okuyama, "Correlation between Crystallite/Particle Size and Photoluminescence Properties of Submicronmeter Phosphors," Chem. Mater., 19 [7] 1723-30 (2007). https://doi.org/10.1021/cm062887p
  21. T. Watanabe, Y. Iso, and T. Isobe, "Synthesis of $Y_2O_3:Bi^{3+},Eu^{3+}$ Nanosheets from Layered Yttrium Hydroxide Precursor and Their Photoluminescence Properties," RSC Adv., 7 [23] 14107-13 (2017). https://doi.org/10.1039/C7RA01114H
  22. X. T. Wei, Y. H. Chen, X. R. Cheng, M. Yin, and W. Xu, "Photoluminescence Characteristics and Energy Transfer between $Bi^{3+}$ and $Eu^{3+}$ in $Gd_2O_3:Eu^{3+},Bi^{3+}$ Nanophosphors," Appl. Phys. B, 99 [4] 763-68 (2010). https://doi.org/10.1007/s00340-010-3971-4
  23. W. Xu, H. Song, D. Yan, H. Zhu, Y. Wang, S. Xu, X. Bai, B. Dong, and Y. Liu, "$YVO_4:Eu^{3+},Bi^{3+}$ UV to Visible Conversion Nano-Films Used for Organic Photovoltaic Solar Cells," J. Mater. Chem., 21 [33] 12331-36 (2011). https://doi.org/10.1039/c1jm11761k
  24. T. Orihashi, T. Nakamura, and S. Adachi, "Resonant Energy Transfer in ($Eu^{3+},Bi^{3+}$)-Codoped $CaZrO_3$ Red-Emitting Phosphor," RSC Adv., 6 [70] 66130-39 (2016). https://doi.org/10.1039/C6RA13429G
  25. H. Xiao, P. Li, F. Jia, and L. Zhang, "General Nonaqueous Sol-Gel Synthesis of Nanostructured $Sm_2O_3$, $Gd_2O_3$, $Dy_2O_3$, and $Gd_2O_3:Eu^{3+}$ Phosphor," J. Phys. Chem. C, 113 [50] 21034-41 (2009). https://doi.org/10.1021/jp905538k
  26. H. Chen, J. Zhang, X. Wang, S. Gao, M. Zhang, Y. Ma, Q. Dai, D. Li, S. Kan, and G. Zou, "The Effect of the Size of Raw $Gd(OH)_3$ Precipitation on the Crystal Structure and PL Properties of $Gd_2O_3:Eu$," J. Colloid Interface Sci., 297 [1] 130-33 (2006). https://doi.org/10.1016/j.jcis.2005.10.018
  27. X. Ye, W. Gao, L. Xia, H. Nie, and W. Zhuang, "A Modified Solution Combustion Method to Superfine $Gd_2O_3:Eu^{3+}$ Phosphor: Preparation, Phase Transition and Optical Properties," J. Rare Earths, 28 [3] 345-50 (2010). https://doi.org/10.1016/S1002-0721(09)60109-5
  28. B. H. Min and K. Y. Jung, "Synthesis of Luminescence Characteristics of Fine-Sized $Ba_2Si_6O_{12}N_2:Eu$ Green Phosphor through Spray Pyrolysis Using $TEOS/Si_3N_4$ Mixed Precursors," RSC Adv., 7 [71] 44759-65 (2017). https://doi.org/10.1039/C7RA08620B
  29. J. S. Cho, K. Y. Jung, and Y. C. Kang, "Yolk-Shell Structured $Gd_2O_3:Eu^{3+}$ Phosphor Prepared by Spray Pyrolysis: the Effect of Preparation Conditions on Microstructure and Luminescence Properties," Phys. Chem. Chem. Phys., 17 [2] 1325-31 (2015). https://doi.org/10.1039/C4CP03477E
  30. M. Borlaf, R. Kubrin, V. Aseev, A. Y. Petrov, N. Nikonorov, and T. Graule, "Deep Submicrometer YAG:Ce Phosphor Particles with High Quantum Yield Prepared by Flame Spray Synthesis," J. Am. Ceram. Soc., 100 [8] 3784-93 (2017). https://doi.org/10.1111/jace.14905
  31. K. Y. Jung, C. H. Lee, and Y. C. Kang, "Effect of Surface Area and Crystallite Size on Luminescent Intensity of $Y_2O_3:Eu$ Phosphor Prepared by Spray Pyrolysis," Mater. Lett., 59 [19-20] 2451-56 (2005). https://doi.org/10.1016/j.matlet.2005.03.017
  32. C. H. Lee, K. Y. Jung, J. G. Choi, and Y. C. Kang, "Nano-Sized $Y_2O_3:Eu$ Phosphor Particles Prepared by Spray Pyrolysis," Mater. Sci. Eng., B, 116 [1] 59-63 (2005). https://doi.org/10.1016/j.mseb.2004.09.016
  33. B. H. Min, J. C. Lee, K. Y. Jung, D. S. Kim, B.-K. Choi, and W.-J. Kang, "An Aerosol Synthesis of $CeO_2:Eu^{3+}/Na^+$ Red Nanophosphor with Enhanced Photoluminescence," RSC Adv., 6 [84] 81203-10 (2016). https://doi.org/10.1039/C6RA16551F
  34. R. G. A. Kumar, S. Hata, K.-I. Ikeda, and K. G. Gopchandran, "Luminescence Dynamics and Concentration Quenching in $Gd_{2-x}Eu_xO_3$ Nanophosphor," Ceram. Int., 41 [4] 6037-50 (2015). https://doi.org/10.1016/j.ceramint.2015.01.051
  35. O. Meza, E. G. Villabona-Leal, L. A. Diaz-Torres, H. Desirena, J. L. Rodriguez-Lopez, and E. Perez, "Luminescence Concentration Quenching Mechanism in $Gd_2O_3:Eu^{3+}$," J. Phys. Chem. A, 118 [8] 1390-96 (2014). https://doi.org/10.1021/jp4119502
  36. M. Buijs, A. Meyerink, and G. Blasse, "Energy Transfer between $Eu^{3+}$ Ions in a Lattice with Two Different Crystallographic Sites: $Y_2O_3:Eu^{3+}$, $Gd_2O_3:Eu^{3+}$ and $Eu_2O_3$," J. Lumin., 37 9-20 (1987). https://doi.org/10.1016/0022-2313(87)90177-3

Cited by

  1. Photoluminescence, thermoluminescence, and cathodoluminescence of optimized cubic Gd2O3:Bi phosphor powder vol.38, pp.6, 2020, https://doi.org/10.1116/6.0000567
  2. Y2O3:Eu3+ Nanophosphor-Coated Mica or TiO2/Mica as Red-Emitting Pearl Pigment: Coating Factors, Luminescent and Gloss Properties vol.11, pp.10, 2018, https://doi.org/10.3390/app11104365