• Title/Summary/Keyword: Ethylene-Vinyl Acetate (EVA)

Search Result 146, Processing Time 0.022 seconds

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

The Compatibilizing Effect of Maleic Anhydride in Ethylene-Vinyl Acetate (EVA)/Ethylene-${\alpha}$-Olefin Copolymers Blends

  • Park, Soo-Chul;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.297-305
    • /
    • 2005
  • The compatibilizing effect of maleic anhydride (MA) in the immiscible blends of EVA22 (vinyl acetate content 22%)/ethylene-${\alpha}$-olefin copolymers with 1-butene (EtBC) and 1-octene (EtOC)) comonomers was studied. By adding 1, 2, and 3 phr of MA in the presence of dicumylperoxide, the morphology, tensile strength at break, and 100 and 300 % modulus of EVA22/EtBC and EVA22/EtOC blends were significantly enhanced. The melting point and crystallization point depression were observed upon the addition of MA. The changes in the ${\beta}$ transition and glass transition temperature of ethylene-${\alpha}$-olefin copolymers and ethylene-vinyl acetate copolymers, respectively, indicate that MA plays a role of compatibilizer for these immiscible blends. The TGA thermograms, measured from the blends with MA, show that thermal stability is slightly enhanced with MA, indicating that MA acts as a reinforcing agent either by grafting or crosslinking with other copolymers.

Experimental study on the effects of EVA(Ethylene Vinyl Acetate) for solar cell's long-term life (EVA(Ethylene Vinyl Acetate) 수지가 태양전지의 장기적인 수명에 미치는 영향에 관한 실험적 연구)

  • Kim, Seon Yong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.397-401
    • /
    • 2015
  • In this study, analysed the characteristics of power drop and surface damage in solar cell through high temperature and humidity test in the 3 case of EVA(ethylene vinyl acetate) and 2 case ribbon thickness. The solar cells were tested during the 500hr in $85^{\circ}C$ temperature and 85% relative humidity conditions, that excerpted standard of PV Module(KS C IEC-61215). Through the EL(Electroluminescence) shots, specimen's surface have partialy damaged. Before and after high humidity and high temperature test, ribbon thickness $200{\mu}m$ EVA1 case power drop rate was 8.463%, EVA2 case was 6.667%, EVA3 case was 6.373%. In the ribbon thickness $250{\mu}m$ EVA1 case power drop rate was 6.521%, EVA2 case was 8.517%, EVA3 case was 6.019%. EVA3 case was the lowest power and FF(fill factor) drop rate at the 2 case of ribbon thickness, because EVA3 is laerger than EVA1 and EVA2 in thickness, elongation and tensile strength.

Foaming Characteristics of Ethylene Vinyl Acetate/Styrene Vinyl Isoprene Styrene Triblock Copolymer Blend (Ethylene Vinyl Acetate / Styrene Vinyl Isoprene Styrene Triblock Copolymer 블렌드의 발포특성)

  • Heo, Jae-Young;Kim, Jin-Tae;Yoon, Jung-Sik;Yoo, Jong-Sun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2000
  • The foam of ethylene vinyl acetate (EVA)/styrene-vinyl isoprene-styrene triblock copolymer(SVIS) blend was prepared to improve the shock-absorption and compression set characteristics at room temperature. The effects of blowing agent and blend ratio of EVA/SVIS on expansion ratio, cell structure and mechanical properties of the foam were investigated. As the SVIS content increased, the viscosity of blends was increased but the crosslinking rate was slow down, the expansion ratio was decreased. and the specific gravity was increased. At room temperature, the resilience was not affected by increasing the amount of blowing agent. The value of tan ${\delta}$ was increased by increasing the amount of SVIS. As a result, the value of compression set was decreased. This is due to the increased values of specific gravity and crosslinking density of the EVA/SVIS foam.

  • PDF

Development of functional microsphere (I) - Formation and characteristics of poly(ethylene-co-vinyl acetate) microspheres via thermally induced phase separation - (기능성 마이크로스피어의 개발 (I) - 열유도 상분리에 의한 Poly(ethylene-co-vinyl acetate) 마이크로스피어의 제조와 특성 -)

  • 이신희;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2003
  • Poly(ethylene-co-vinyl acetate)(EVA) microspheres were prepared by a thermally induced phase separation. The microsphere formation occurred by the nucleation and growth mechanism in the metastable region. The diluent used was toluene. The microsphere formation and growth was followed by the cloud point of the optical microscope measurement. The microsphere size distribution, which was obtained by SEM observation and particle size analyzer, became broader when the polymer concentration was higher, the content of vinyl acetate in EVA copolymer was higher, and the cooling rate of EVA copolymer solution was lower.

Physical Properties of Functionalized Graphene Sheet/Poly(ethylene-co-vinyl acetate) Composites (관능화 그래핀 쉬트/에틸렌-비닐아세테이트 공중합체 복합재료의 물성)

  • Lee, Ki Suk;Kim, Jeong Ho;Jeong, Han Mo
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • The physical properties of functionalized graphene sheet (FGS)/poly(ethylene-co-vinyl acetate) (EVA) was examined with various kinds of EVA, having vinyl acetate (VA) contents in the range of 0 to 40 wt%. The compatibility between FGS and EVA was enhanced as the polar VA content of EVA increased. Thus, the dispersion of FGS in EVA became finer, and the decrease of surface resistivity and the increase of tensile modulus by the added FGS became more effective when the VA content of EVA was high. When the VA content was low, the elongation at break was reduced drastically by added FGS due to the poor adhesion of FGS/EVA interface. The crystallization of EVA was generally retarded by the interaction with dispersed FGS. However, when both the VA content of EVA and the added amount of FGS were low, the crystallization of EVA was enhanced, probably due to the predominant nucleating effect by FGS.

Preparation and Properties of Ethylene Vinyl Acetate/Ethylene-1-Butene Copolymer Blend Based Foam (Ethylene Vinyl Acetate / Ethylene-1-Butene Copolymer 블렌드 발포체의 제조와 특성)

  • Cha, Gil-Soo;Kim, Jin-Tae;Yoon, Jung-Sik;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • To increase the properties of EVA foam such as tensile strength, rebound resilience, and compression set, ethylene-1-butene copolymer (EtBC) was blended with EVA. After that crosslink characteristics of the blends and cell structures and mechanical properties of the foam were studied. As the amount of EtBC increased in EVA/EtBC blends, torque values of oscillating disc rheometer(ODR) increased and the foaming ratio decreased because the viscosity and crosslink density of EVA/EtBC blends increased. Foaming ratio and cell size of the foam increased by increasing the amount of foaming agent. When compared the mechanical properties of the foam which have same densities, tensile strength, rebound resilience, and compression set properties of the foam were improved by increasing the amount of EtBC in the EVA/EtBC blends.

  • PDF

A Study on the Dyeing Property of EVA Blended Polypropylene Fiber (EVA로 Blending된 Polypropylene Fiber의 염색성에 관한 연구)

  • 장철민;임상규;김삼수;손태원;서말용
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • Polypropylene-ethylene/vinyl acetate copolymer (PP-EVA) blends were prepared by mechanical blending using relatively semi-crystaline ethylene-vinyl acetate copolymer and polypropylene. In order to obtain dyeable PP fiber, PP-EVA blends were prepared using below 10wt.% of EVA and formed a filament by the melt spinning method. The resultant fibers had tensile strengh of 2∼3g/d, elongation of 330∼600%, initial modulus of 22∼46g/d, and exhibited markedly improved dyeing property.

  • PDF

Atmospheric-Pressure Plasma Treatment of Ethylene-Vinyl Acetate (EVA) to Enhance Adhesion Energy between EVA and Polyurethane (상압 플라즈마 표면처리에 따른 Ethylene-Vinyl Acetate (EVA)의 표면개질 및 Polyurethane과의 접착력 증진)

  • Kim, Jeong-Soon;Uhm, Han-S;Kim, Hyoung-Suk
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • Plasma treatment is frequently used to increase surface functionality and surface activity. It enables to improve various surface properties such as catalytic selectivity, printability, and interfacial adhesion between various materials. Surface or the ethylene-vinyl acetate (EVA) is exposed under an atmospheric pressure plasma torch (APPT), generated by dielectric barrier discharge (DBD), and the treated surfaces are systemically investigated. Argon, air, and oxygen are used as a processing gas. Properties of the treated EVA surfaces are investigated by the zeta-potential measurements and surface free energies. It is shown that the plasma treatment leads to a drastic increase of surface functional groups of EVA, as the increase of its adhesion energy ($G_{IC}$). Therefore, it is concluded that the APPT process is an effective means to improve adhesion of EVA and polyurethane (PU).

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.