• 제목/요약/키워드: Ethylene Production

검색결과 377건 처리시간 0.027초

Gene expression analysis related to ethylene induced female flowers of cucumber (Cucumis sativus L.) at different photoperiod

  • Ikram, Muhammad Maulana Malikul;Esyanti, Rizkita Rachmi;Dwivany, Fenny Martha
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.229-234
    • /
    • 2017
  • Photoperiod is one of the factors affecting productivity of cucumber plant by inducing ethylene hormone production and so triggering flower sex differentiation into female flower. However, only few studies have been perfomed in order to reveal the effect of photoperiod in molecular level in relation to the flower differentiation. Therefore, in this study, Mercy cultivar of cucumber (andromonoecious) was treated with photoperiod of 8, 12, 16 hours of light, while control received no treatment of additional light. Photoperiod of 8 hours was achieved by blocking the sunlight with shade net and 16 hours by giving longer light exposure using white LEDs. Cucumber's flowers were quantified and the apical and lateral shoots were extracted to evaluate the gene profile related to the photoperiod, ethylene production, and female flower differentiation, which were CsACS2, CsETR1, CsCaN, and CsPIF4 using PCR method. Photoperiod of 8 hours affected the production of female flower with average number of 6.7 flowers in main stem and 8.0 flowers in lateral stem, compared to photoperiod of 12 and 16 hours which produced 3.7 and 2.0 flowers in main stem with 7.0 and 11.3 in lateral stem, respectively. In silico studies in this experiment resulted in proposed model of signal transduction that showed the connection between ethylene production and flower differentiation. PCR analysis confirmed the expression of CsACS2, CsETR1, and CsCaN, that was positively correlated with numbers of female flowers in cucumber, but the expression of CsPIF4 that represent photoperiod haven't been confirmed correlated with the ethylene production and flower differentiation.

옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과 (Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots)

  • 김충수;티모시 멀키;김종식;김순영
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin은 미세소관을 분열시키는 dinitroaniline계의 제초제이다. 미세소관과 미세섬유는 평형석 침강과 세포벽을 구성하는 세포골격들이다. 평형석은 뿌리 끝에 있는 columella 세포에서 중력 인지 조절을 한다. 본 연구는 oryzalin이 옥수수 일차 뿌리에서 ethylene 생성을 통하여 굴중성 반응에 미치는 영향을 연구하였다. 뿌리 끝 부분에 10-4 M oryzalin의 처리는 뿌리 성장과 굴중성 반응을 저해하였으나, 신장대에 처리하게 되면 저해현상은 관찰되지 않았다. 10-4 M oryzalin을 뿌리 끝에 15시간 처리하면 뿌리 끝의 생장이 억제되고 둥근 형태로 부풀었다. 에틸렌의 전구물질인 ACC를 뿌리 끝에 처리하여도 굴중성 반응이 억제되었다. Oryzalin의 작용과 에틸렌 생성에 대한 관련성을 연구하기 위하여 oryzalin 처리 후 에틸렌 생성을 측정하였다. Oryzalin 처리에 의해 ACC oxidase와 ACC synthase의 활성이 증가되어 에틸렌 생성이 촉진되었다. Oryzalin은 ACO와 ACS의 유전자의 발현도 증가 시켰다. Indole-3-acetic acid (IAA)는 굴중성 반응 동안 관찰되는 비 대칭적 신장에 중요한 역할을 한다. 이러한 연구 결과는 oryzalin이 뿌리 끝에서 IAA transport를 억제하여 뿌리 신장대의 윗면과 아랫면의 IAA 양의 차이를 감소시키고, 또한 에틸렌 생성을 촉진하며 미세소관의 배열을 방해하여 뿌리 글중성과 생장을 억제할 가능성을 제시하고 있다.

Changes in flavor-relevant compounds during vine ripening of tomato fruit and their relationship with ethylene production

  • Wang, Libin;Luo, Weiqi;Sun, Xiuxiu;Qian, Chunlu
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • 제59권6호
    • /
    • pp.787-804
    • /
    • 2018
  • Flavor quality is import for determining consumer perception and acceptance of tomato products. In this study, 'Fendou' tomato fruit were harvested at six ripening stages and sampled to investigate the development of flavor-relevant compounds during vine ripening. Results showed that upon the initiation of ripening there was an increase in respiration rate and concomitant ethylene evolution that was associated with increased membrane permeability. In accordance with these physiological changes, flavor-relevant compounds demonstrated different expression patterns as fruit ripened, which contributed to 'red-ripe' flavor characteristics of red-ripe fruit. Based on correlation analysis between ethylene evolution and the flavor-relevant compounds during 'Fendou' tomato ripening and the other researchers' reports, the activation of System 2-dependent autocatalytic ethylene production plays an important role in the development of most flavor-relevant compounds during tomato vine ripening. Overall, our results suggested that most flavor-relevant compounds that accumulated the most during tomato fruit ripening at red stage could be under ethylene regulation and were among the most important contributors to the 'red-ripe' flavor. Due to the development of these compounds, the flavor quality at late ripening stages is different from that of fruit at early ripening stages.

Exogenous Sugars Involvement in Senescence and Ethylene Production of Tree Peony 'Luoyang Hong' Cut Flowers

  • Zhang, Chao;Liu, Miao;Fu, Jianxin;Wang, Yanjie;Li, Dong
    • 원예과학기술지
    • /
    • 제30권6호
    • /
    • pp.718-724
    • /
    • 2012
  • Sugars play important roles in petal senescence of cut flowers. In the Expt. 1 of this study, the effects of different concentrations of glucose (60, 90, and $120g{\cdot}L^{-1}$) and sucrose (30, 60, and $90g{\cdot}L^{-1}$) application on the vase life, rate of flower diameter increase, rate of flower weight increase and ethylene production of cut tree peony (Paeonia suffruticosa 'Luoyang Hong') were evaluated. At the earlier stage, treatments of different concentrations of glucose and sucrose all retarded the process of flower opening and inhibited the increase of flower diameter and weight, while senescence of flowers fed with different concentrations of glucose was delayed at later stage. Flowers treated with $90g{\cdot}L^{-1}$ glucose displayed the longest vase life, which showed significant difference (P < 0.05) from those of flowers with the control and sucrose treatments. All treatments with glucose or sucrose not only retarded the decrease of flower diameter and weight, but also suppressed the ethylene production at the earlier stage and delayed the peak of ethylene evolution. In order to study the effect of exogenous sugar on the postharvest response of cut tree peony to ethylene, Expt. 2 was conducted. Cut flowers were treated with $90g{\cdot}L^{-1}$ glucose for 4 hours before (GE) or after (EG) exposed to $10{\mu}L{\cdot}L^{-1}$ ethylene for 4 hours. Generally, the opening process of flowers with GE and EG treatments was similar to that of the control, however GE treatment delayed flower senescence. Both GE and EG treatments improved flower diameter and weight, and GE treatment delayed the time of flower weight decrease. Besides, GE delayed climacteric ethylene evolution for 8 hours. All above suggest that exogenous sugars delay tree peony 'Luoyang Hong' cut flower senescence and extend flower vase life through their roles in the decrease of water loss and the suppression of sensitivity to ethylene and ethylene production.

1-MCP Improves Display Life in Begonia × hiemalis 'Blitz' and 'Carnival'

  • Kim, Yoon-Jin;Kim, Ki-Sun
    • 원예과학기술지
    • /
    • 제30권2호
    • /
    • pp.152-157
    • /
    • 2012
  • We investigated the effect of 1-methylcyclopropene (1-MCP) on ethylene production induced by simulated transport stress in $Begonia$ ${\times}$ $hiemalis$ 'Blitz' and 'Carnival' to improve the display life in potted plants. The simulated transportation conditions were imposed for 4 days in simulated export containers with darkness, vibration with continuous shaking ($150{\pm}20$ rpm) on a rotary lab shaker, and low temperature ($12^{\circ}C$). Plants were treated with 1-MCP at three concentrations (5, 25, or 125 $nL{\cdot}L^{-1}$) and for three different periods (0, 6, or 12 hours) before undergoing the simulated transport stress treatments. Treatment with 25 or 125 $nL{\cdot}L^{-1}$ 1-MCP inhibited the abscission of open flowers by more than 40% as compared to the untreated plants. One week after the treatments, the ethylene production decreased in the plants treated with 125 $nL{\cdot}L^{-1}$ 1-MCP for 'Blitz' and 25 $nL{\cdot}L^{-1}$ for 'Carnival'. Ethylene production was correlated with concentration and duration of 1-MCP treatment in 'Blitz', but not in 'Carnival'. To reduce flower abscission and ethylene production, thus improve the display life when plants are exposed to transportation stress, we recommend pre-treatment with 1-MCP before packaging, using concentrations and durations specific to each cultivar, 125 $nL{\cdot}L^{-1}$ for 6 h and 25 $nL{\cdot}L^{-1}$ for 12 hours for 'Blitz' and 'Carnival', respectively.

Effect of 1-methylcyclopropene on Postharvest Quality in 'Formosa' Plums (Prunus salicina L.) Harvested at Various Stages of Maturity

  • Lee, Ji-Hyun;Bae, Rona;Lee, Seung-Koo
    • 원예과학기술지
    • /
    • 제29권6호
    • /
    • pp.583-591
    • /
    • 2011
  • 'Formosa' plums were picked at three maturity stages according to skin redness, treated with $1{\mu}L{\cdot}L^{-1}$ 1-MCP at $10^{\circ}C$ for 24 h and then stored for 21 days at $10^{\circ}C$. Ethylene production, respiration rate, firmness, color, TSS, TA, and ethanol concentration were determined. Total phenolic content, total flavonoid content, and antioxidant capacity were determined periodically by separating the flesh from the peel. Ethylene production and respiration rate were strongly inhibited in all stages of the 1-MCP-treated fruit, while ethylene production dramatically increased in all stages of non-treated fruit until 11 days after harvest, after which it decreased until the end of the experiment. The respiration rate of the stored fruit increased for 11 days in stages 1 and 2 and for 7 days in stage 3 and decreased after. 1-MCP-treated fruit in all stages showed delay in fruit quality changes such as firmness, TA, skin color, and ethanol concentration, but non-treated fruit did not. Total phenolic contents, total flavonoid contents and antioxidant capacity of 'Formosa' plums were not affected by 1-MCP treatment or maturity stage. However, those values were higher in the peel than in the flesh.

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Biofiter를 이용한 에틸렌 분해 (Degradation of Ethylene by a Biofilter)

  • 김종오
    • 한국대기환경학회지
    • /
    • 제17권3호
    • /
    • pp.269-276
    • /
    • 2001
  • The objective of this study was to investigate the biodegradation of ethylene in an biofilter inoculated with ethylene-oxidizing microorganisms. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving the ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. It was found that carbon dioxide was produced at a rate of 87 mg/day, which corresponded to a volume of 0.05 L/day. Observable features of the ethylene-oxidizing microorganisms, meaning microbial activity occurrence in the biofilter, were investigated with the microscopy analysis.

  • PDF

Arabidopsis 피토크롬 돌연변이체(phyAB)의 뿌리 굴중성 반응 (Root Gravitropic Response of Phytochrome Mutant (phyAB) in Arabidopsis)

  • 우순화;오승은;김종식;;;김순영
    • 생명과학회지
    • /
    • 제18권2호
    • /
    • pp.148-153
    • /
    • 2008
  • Arabidopsis의 피토크롬 2중 돌연변이형 (phrAB)은 야생형 (WT)과 비교하여 뿌리의 굴중성 반응이 지연되었다. 중력 자극을 받은 지 8시간 후에 돌연변이체의 굴중성 반응은 야생형의 48%를 나타내었다 지연된 반응은 중력 자극을 준 후 1.5 시간 뒤에 나타났다. 12시간 동안 야생형과 돌연변이형의 뿌리 절편에서 에틸렌 생성을 측정하였다. 돌연변이형의 에틸렌 생성은 12시간이 경과한 후에 야생형의 40% 정도로 감소되었다. 이러한 결과는 피토크롬이 에틸렌 생성과 연관되어 있음을 제시하고 있다. 일반적으로 에틸렌은 식물의 뿌리나 줄기를 억제한다. 본 연구에서는 에틸렌 전구체인 1-aminocycloprpane-1-carboxylic acid (ACC)를 처리하여 뿌리의 생장을 측정하였다. 야생형은 ACC 존재하에 뿌리 생장이 억제되었으나, 돌연변이형은 야생형만큼 억제를 나타내지 않았다. 이 결과를 확인하기 위하여 ACC 존재하에 굴중성 반응을 측정한 결과, 야생형은 ACC가 없는 경우와 비교하여 37.4%의 억제를 나타냈으나, 돌연변이형은 ACC가 없는 경우와 비교하여 6.6%만을 억제하였다. 이 결과는 피토크롬이 에틸렌 생성을 통하여 뿌리 굴중성 반응을 조절한다는 것을 제시한다.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.