DOI QR코드

DOI QR Code

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots

옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과

  • Kim, Chungsu (Department of Biological Sciences, Andong National University) ;
  • Mulkey, Timothy J. (Department of Biology, Indiana State University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon Young (Department of Biological Sciences, Andong National University)
  • Received : 2015.10.06
  • Accepted : 2015.10.16
  • Published : 2015.11.30

Abstract

Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Oryzalin은 미세소관을 분열시키는 dinitroaniline계의 제초제이다. 미세소관과 미세섬유는 평형석 침강과 세포벽을 구성하는 세포골격들이다. 평형석은 뿌리 끝에 있는 columella 세포에서 중력 인지 조절을 한다. 본 연구는 oryzalin이 옥수수 일차 뿌리에서 ethylene 생성을 통하여 굴중성 반응에 미치는 영향을 연구하였다. 뿌리 끝 부분에 10-4 M oryzalin의 처리는 뿌리 성장과 굴중성 반응을 저해하였으나, 신장대에 처리하게 되면 저해현상은 관찰되지 않았다. 10-4 M oryzalin을 뿌리 끝에 15시간 처리하면 뿌리 끝의 생장이 억제되고 둥근 형태로 부풀었다. 에틸렌의 전구물질인 ACC를 뿌리 끝에 처리하여도 굴중성 반응이 억제되었다. Oryzalin의 작용과 에틸렌 생성에 대한 관련성을 연구하기 위하여 oryzalin 처리 후 에틸렌 생성을 측정하였다. Oryzalin 처리에 의해 ACC oxidase와 ACC synthase의 활성이 증가되어 에틸렌 생성이 촉진되었다. Oryzalin은 ACO와 ACS의 유전자의 발현도 증가 시켰다. Indole-3-acetic acid (IAA)는 굴중성 반응 동안 관찰되는 비 대칭적 신장에 중요한 역할을 한다. 이러한 연구 결과는 oryzalin이 뿌리 끝에서 IAA transport를 억제하여 뿌리 신장대의 윗면과 아랫면의 IAA 양의 차이를 감소시키고, 또한 에틸렌 생성을 촉진하며 미세소관의 배열을 방해하여 뿌리 글중성과 생장을 억제할 가능성을 제시하고 있다.

Keywords

References

  1. Abeles, F. B., Morgan, P. W. and Saltveit, M. E. Jr. 1992. Ethylene in plant physiology. 2nd edition, Academic Press. San Diego, USA.
  2. Blancaflor, E. B. 2013. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am. J. Bot. 100, 143-152. https://doi.org/10.3732/ajb.1200283
  3. Blancaflor, E. B. and Masson, P. H. 2003. Plant gravitropism. Uunraveling the ups and downs of a complex process. Plant Physiol. 133, 1677-1690. https://doi.org/10.1104/pp.103.032169
  4. Hou, G., Mohamalawari, D. R. and Blancaflor, E. B. 2003. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol. 131, 1360-1373. https://doi.org/10.1104/pp.014423
  5. Kim, S. Y. and Mulkey, T. J. 1997. Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L). J. Plant Biol. 40, 256-260. https://doi.org/10.1007/BF03030457
  6. Kim, S. Y., Kim, Y. K., Kwon, K. S. and Kim, K. W. 2000. Action of malformin A1 on gravitropic curvature in primary roots of maize (Zea mays L.). J. Plant Biol. 43, 183-188. https://doi.org/10.1007/BF03030417
  7. Lee, J. S., Chang, W. K. and Evans, M. L. 1990. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol. 94, 1770-1775. https://doi.org/10.1104/pp.94.4.1770
  8. Ma, Z. and Ren, Y. 2012. Ethylene interacts with auxin in regulating developmental attenuation of gravitropism in flax root. J. Plant Growth Regul. 31, 509-518. https://doi.org/10.1007/s00344-012-9261-0
  9. Morejohn, L. C., Bureau, T. E., Mole-Bajer, J., Bajer, A. S. and Fosket, D. F. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172, 252-264. https://doi.org/10.1007/BF00394595
  10. Morita, M. T. 2010. Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61, 705-720. https://doi.org/10.1146/annurev.arplant.043008.092042
  11. Mulkey, T. J., Kuzmanoff, K. M. and Evans, M. L. 1982. Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol. 70, 186-188. https://doi.org/10.1104/pp.70.1.186
  12. Ottenschläger, I., Wolff, P., Wolverton, C., Bhalerao, R. P., Sandberg, G., Ishikawa, H., Evans, M. and Palme, K. 2003. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA 100, 2987-2991. https://doi.org/10.1073/pnas.0437936100
  13. Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J. and Benkova, E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197-2212. https://doi.org/10.1105/tpc.107.052126
  14. Santhisree, P., Nongmaithem, S., Sreelakshmi, Y., Ivanchenko, M. and Sharma, R. 2012. The root as a drill: An ethylene-auxin interaction facilitates root penetration in soil. Plant Signal. Behav. 7, 151-156. https://doi.org/10.4161/psb.18936
  15. Schwuchow, J. and Sack, F. D. 1994. Microtubules restrict plastid sedimentation in protonemata of the moss Ceartodon. Cell Motil. Cytoskeleton 29, 366-374. https://doi.org/10.1002/cm.970290409
  16. Strachan, S. D. and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20, 141-150. https://doi.org/10.1016/0048-3575(83)90018-4
  17. Swarup, R., Perry, P., Hangenbeek, D., Van Der Straeten, D., Beemster, G. T., Sandberg, G., Bhalerao, R., Ljungt, K. and Bennett, M. J. 2007. Ethylene up-regulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186-2196. https://doi.org/10.1105/tpc.107.052100
  18. Wang, H. and Woodson, W. R. 1989. Reversible inhibition of ethylene action and interruption of petal senescence on carnation flowers by norbornadiene. Plant Physiol. 89, 434-438 https://doi.org/10.1104/pp.89.2.434
  19. Woeste, K. E., Ye, C. and Kieber, J. J. 1999. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 10-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521-530. https://doi.org/10.1104/pp.119.2.521
  20. Yuan, M., Shaw, P. J., Warn, R. M. and Lloyd, C. W. 1994. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cell. Proc. Natl. Acad. Sci. USA 91, 6050-6053. https://doi.org/10.1073/pnas.91.13.6050
  21. Zarembinski, T. I. and Theologis, A. 1994. Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579-1597. https://doi.org/10.1007/BF00016491