• Title/Summary/Keyword: Ethanol gas

Search Result 358, Processing Time 0.022 seconds

Synthesis of Mixed Phase Vanadium Oxides Thin Films and Their Ethanol Gas Sensing Properties (혼합 상의 바나듐 산화물 박막 제작 및 에탄올 가스 감지 특성 연구)

  • Han, Soo Deok;Kang, Chong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2018
  • Using a vanadium dioxide ($VO_2$) source, highly pure and amorphous vanadium oxide (VO) thin films were deposited using an e-beam evaporator at room temperature and high vacuum (<$10^{-7}$ Torr). Then, by controlling the post-annealing conditions such as $N_2:O_2$ pressure ratio and annealing time, we could easily synthesize a homogeneous $VO_2$ thin film and also mixed-phase VO thin films, including $VO_2$, $V_2O_5$, $V_3O_7$, $V_5O_9$, and $V_6O_{13}$. The crystallinity and phase of these were characterized by X-ray diffraction, and the surface morphology by FE-SEM. Moreover, the electrical properties and ethanol sensing measurements of the VO thin films were analyzed as a function of temperature. In general, mixed-phases as a self-doping effect have enhanced electrical properties, with a high carrier density and an enhanced response to ethanol. In summary, we developed an easy, scalable, and reproducible fabrication process for VO thin films that is a promising candidate for many potential electrical and optical applications.

Analysis of biomarkers with tunable infrared gas sensors (가변 파장형 적외선 가스 센서에 의한 생체표지자 분석)

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.314-319
    • /
    • 2021
  • In this study, biomarkers were analyzed and segmented using tunable infrared gas sensors after performing the principal component analysis. The free spectral range of the device under test (DUT) was around 30 nm and DUT-5580 yielded the highest output voltage property among the others. The biomarkers (isoprophyl alcohol, ethanol, methanol, and acetone solutions) were sequentially mixed with deionized water and their mists were carried into the gas chamber using high-purity nitrogen gas. A total of 17 different mixed gases were tested with three tunable infrared gas sensors, namely DUT-3144, DUT-5580, and DUT-8010. DUT-8010 resolved the infrared absorption spectra of whole mixed gases. Based on the principal component analysis with each DUT and their combinations, each mixed gas and the trends in increasing gas concentration could be well analyzed when the contributions of the eigenvalues of the first and second were higher than 70% and 10%, respectively, and their sum was greater than 90%.

Effects of CaO on the Ethanol Sensing Characteristics of $LaCoC_3$ ($LaCoC_3$ 산화물의 에탄올 감지특성에 미치는 CaO의 영향)

  • Rim, Byung-O;Shon, Tai-Won;Yang, Chun-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.49-53
    • /
    • 1988
  • The perovskite-type compounds $La_{1-x}Ca_xCoO_3$ were synthesized, their thermochemical properties and the gaseous sensitivity were investigated in ethanol vapor. The maximum response for detecting gas corresponded with the exothermic peak of DTA experiment. In any case the substituent was increased, the responsive ratio for detecting gas was grown upon. However, the needed time for response was later, and the operating temperature was elevated. The mechanism of this electrical conductivity was explained by the oxygen ionic diffusion through oxygen vacancy produced by the substituent.

  • PDF

Acetone Sensing Characteristics of ZnO Nanoparticles Prepared from Zeolitic Imidazolate Framework-7 (Zeolitic Imidazolate Framework-7로 합성한 ZnO 나노입자의 Acetone 가스 감응 특성)

  • Yoon, Ji Won;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Highly uniform and well-dispersed Zeolitic Imidazolate Framework-7 (ZIF-7) particles were prepared by the precipitation of $Zn^{2+}$ using benzimidazole, which were converted into ZnO nanoparticles by heat treatment at $500^{\circ}C$ for 24 h. The ZIF-7 derived ZnO nanoparticles showed abundant mesopores, high surface area, and good dispersion. The gas sensing characteristics toward 5 ppm acetone, ethanol, trimethylamine, ammonia, p-xylene, toluene, benzene, and carbon monoxide and carbon dioxide were investigated at $350-450^{\circ}C$. ZIF-7 derived ZnO nanoparticles exhibited high response to 5 ppm acetone ($R_a/R_g=57.6$; $R_a$: resistance under exposure to the air, Rg: resistance under exposure to the gas) at $450^{\circ}C$ and negligible cross-responses to other interference gases (trimethylamine, ammonia, p-xylene, toluene, benzene, carbon monoxide, carbon dioxide) and relatively low responses to ethanol. ZIF derived synthesis of metal oxide nanoparticles can be used to design high performance acetone sensors.

Anaerobic Treatment of Wastewater containing Nitrate by Upflow Process (질산염을 함유한 폐수의 상향류식 공법에 의한 혐기성 처리)

  • 이원식;은종극
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.95-105
    • /
    • 1998
  • This research was investigated which denitrification of wastewater containing nitrate, using upflow anaerobic sludge blanket process. The upflow anaerobic sludge blanket process is also used for both artifical and industrial wastewater. Main ingredients investigated in the artifical and industrial wastewater experiment were the determination of optimum organism/nitrate ratios, nitrate removal efficiency by various hydrogen donor addition and characteristics of granular sludge and gas production in case of various hydrogen donor addition. From the experimental results the following conclusions were made: In case of adding methanol, ethanol and sodium acetate as hydrogen donor granular sludge was formed 50 days after seeding. Average diameter of granular sludge was 4.0 mm and settling velocity was 37 cm/min. Production rate of gas 3.3 L/d in case of adding methanol as hydrogen donor in wastewater containing 150mg/L nitrate. However adding ethanol and sodium acetate as hydrogen donor, gas production rate were 2.2-2.7L/d respectively. In case of adding methanol as hydrogen donor treatability of artifical wastewater contained 150mg/L as nitrate was about 93%. But in addition of sodium acetate in wastewater contained 40mg.L as nitrate, nitrate removal efficiency was 80%.

  • PDF

Effect of Aspartate and Asparagine on Metabolism and Central Nervous System Effect of Alcohol in Healthy Male Volunteers (Aspartate 및 Asparagine 투여가 알코올 대사 및 중추신경계 효과에 미치는 영향)

  • Yim, Dong-Seok;Lee, Kyung-Hun;Jang, In-Jin;Shin, Sang-Goo;Lee, Yoon-Sung;Park, Sang-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.261-269
    • /
    • 1995
  • Background; To explore the efficacy of aspartate as NAD regenerating agent for ethanol and acetaldehyde oxidation, we performed crossover challenge in two groups of volunteers by coadministration of various doses of aspartate, asparagine and ethanol. Methods; 18 healthy male volunteers were randomly divided into two groups. 6 volunteers of the first group were administered 5 gm monosodium aspartate(MSA), 5 gm asparagine or placebo with 100 ml of $40^{\circ}$ whiskey by the 3 way-crossover design, while 12 volunteers of the other group were administered placebo, 1, 2 or 5 bottles of $Aspar^(circledR)$ containing 1 gm of MSA per bottle with 100 ml of $40^{\circ}$ whiskey by the 4 way-crossover design. Ethanol(and acetaldehyde) concentrations in venous blood drawn at 0, 0.25, 0.5, 1, 2, 4, 8th hour after ethanol ingestion were analysed by gas chromatogaphy. Subjective symptoms, liver function tests and psychomotor function tests were also performed during the study periods. Result; Plasma concentration and AUC of acetaldehyde in asparagine and MSA trials on ethanol ingestion were significantly lower than those of placebo trial in the 1st group. Plasma ethanol concentration of 5 bottle $Aspar^(circledR)$ trial was significantly lower than that of placebo trial in the 2nd group. Improvement of subjective symptoms or psychomotor performance by the treatment was not statistically significant. Conclusion; Aspartate and asparagine may be prospective candidates for acceleration of ethanol metabolism and prevention of ethanol toxicity.

  • PDF

Evaluation of extraction methods for essential oils in mugwort (Artemisia montana) using gas chromatography-mass spectrometry

  • Kim, Jihwan;Oh, Si-Eun;Choi, Eunjung;Lee, Sung-Hoon;Hwang, In Hyun;Kim, Ju-Young;Lee, Wonwoong
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • Mugwort (Artemisia montana), which is a perennial plant mainly distributed throughout Northeast Asian regions, has been used as a preferred source of various foods and traditional medicines in Korea. In particular, as essential oils extracted from mugwort were reported to be biologically active, its steam distillate has been widely used to treat various conditions, such as itching, hemorrhoids, and gynecological inflammation. Therefore, efforts have been devoted to develop effective methods for the collection of bioactive essential oils from mugwort. In this study, five mugwort extracts were obtained using different extraction conditions, namely, 6 % ethanol at room temperature and at 80 ℃, pure ethanol, n-hexane, and an adsorbent resin. To evaluate the five extracts of mugwort, area-under-the-curve values (AUCs), chemical profiles, and major bioactive essential oil contents were investigated using gas chromatography-mass spectrometry (GC-MS). An overall assessment of the volatile components, including essential oils, in the five extracts was conducted using AUCs, and the individual essential oil in each extract was identified. Furthermore, the four major essential oils (1,8-cineole, camphor, borneol, and α-terpineol), which are known to possess anti-microbial and anti-inflammatory activities, were quantified using authentic chemical standards. Based on the evaluation results, pure ethanol was the best extractant out of the five used in this study. This study provides evaluation results for the five different mugwort extracts and would be helpful for developing extraction methods to efficiently collect the bioactive oil components for medical purposes using chemical profiles of the extracts.

Sensing and Degradation Properties in the QCM Gas Sensor Coated with the PVC and GC Blended Liquid (PVC 및 GC물질의 혼합액을 코팅한 QCM가스센서의 센싱 및 열화특성)

  • 장경욱;김명호;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.483-486
    • /
    • 2000
  • In the recognition of the gases using the quartz crystal rnicrobalance (QCM) coated with the film materials, it is important to obtain the recognition ability of gases, and the stability of film coated above the QCM. Especially, the thickness of film coated above the QCM is decreased according with the using circumstance and time of QCM gas sensor. Therefore, the sensing chararcteristics of film is changed with these. In this paper, we coated the lipid GC materials varing with the blended amount of PVC(Po1y Vinyl Chloride) and solution (Tetra Hydrofan:THF) above QCM to obtain the stability of lipid PC film. QCM gas sensors coated with film materials were measured the frequency change in the chamber of stationary gas sensing system injected 1-hexane, ethyl acetate, ethanol and benzene of 20.4 respectively. Also, we measured the degradation characteristics of QCM gas sensor to show the properties of stability.

  • PDF

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

High Productivity Ethanol Fermentation Using Flocculant Yeast (응집성 효모에 의한 고생산성 알콜 발효)

  • 손석민;김인규;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 1992
  • A tower fermentor equipped with a modified settler was used for ethanol fermentation using highly flocculating yeast, Saccharomyces uvarum. The settler was constructed of glass column divided into two chambers by a funnel shaped divider. Gas was allowed to escape from lower chamber of the settler through a small tube. This design significantly reduced the turbulence in upper chamber of the settler and made it possible to operate at high dilution rate. Using the tower fermentor, the effects of operating conditions such as initial glucose concentration, dilution rate and cell recycle ratio were studied. The maximum ethanol productivity, 64.0 g/l' h was obtained at a dilution rate 1.1 h -1 and a cell recycle ratio 5 with the corresponding ethanol concentration of 58.8 g/l, and cell mass of 88 g/l.

  • PDF