DOI QR코드

DOI QR Code

Synthesis of Mixed Phase Vanadium Oxides Thin Films and Their Ethanol Gas Sensing Properties

혼합 상의 바나듐 산화물 박막 제작 및 에탄올 가스 감지 특성 연구

  • Han, Soo Deok (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
  • 한수덕 (한국과학기술연구원 전자재료연구단) ;
  • 강종윤 (한국과학기술연구원 전자재료연구단)
  • Received : 2017.10.10
  • Accepted : 2017.10.18
  • Published : 2018.01.01

Abstract

Using a vanadium dioxide ($VO_2$) source, highly pure and amorphous vanadium oxide (VO) thin films were deposited using an e-beam evaporator at room temperature and high vacuum (<$10^{-7}$ Torr). Then, by controlling the post-annealing conditions such as $N_2:O_2$ pressure ratio and annealing time, we could easily synthesize a homogeneous $VO_2$ thin film and also mixed-phase VO thin films, including $VO_2$, $V_2O_5$, $V_3O_7$, $V_5O_9$, and $V_6O_{13}$. The crystallinity and phase of these were characterized by X-ray diffraction, and the surface morphology by FE-SEM. Moreover, the electrical properties and ethanol sensing measurements of the VO thin films were analyzed as a function of temperature. In general, mixed-phases as a self-doping effect have enhanced electrical properties, with a high carrier density and an enhanced response to ethanol. In summary, we developed an easy, scalable, and reproducible fabrication process for VO thin films that is a promising candidate for many potential electrical and optical applications.

Keywords

References

  1. K. Schwab, The Fourth Industrial Revolution (The Crown Publishing Group, USA, 2017).
  2. H. Takagi and H. Y. Hwang, Science, 327, 1601 (2010). [DOI: https://doi.org/10.1126/science.1182541]
  3. J. G. Bednorz and K. A. Muller, Z. Phys. B - Condensed Matter, 64, 189 (1986). [DOI: https://doi.org/10.1007/BF01303701]
  4. D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat. Commun., 2, 596 (2011). [DOI: https://doi.org/10.1038/ncomms1602]
  5. J. Maciejko and G. A. Fiete, Nat. Phys., 11, 385 (2015). [DOI: https://doi.org/10.1038/NPHYS3311]
  6. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys., 70, 1039 (1998). [DOI: https://doi.org/10.1103/RevModPhys.70.1039]
  7. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res., 41, 337 (2011). [DOI: https://doi.org/10.1146/annurevmatsci-062910-100347]
  8. C. Wu, F. Feng, and Y. Xie, Chem. Soc. Rev., 42, 5157 (2013). [DOI: https://doi.org/10.1039/C3CS35508J]
  9. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy, 1, 221 (2012). [DOI: https://doi.org/10.1016/j.nanoen.2011.12.002]
  10. Y. Yue and H. Liang, Adv. Energy Mater., 7, 1602545 (2017). [DOI: https://doi.org/10.1002/aenm.201602545]
  11. G. Micocci, A. Serra, A. Tepore, S. Capone, R. Rella, and P. Siciliano, J. Vac. Sci. Technol., A, 15, 34 (1997). [DOI: https://doi.org/10.1116/1.580471]
  12. A. Subrahmanyam, Y.B.K. Reddy, and C. L. Nagendra, J. Phys. D: Appl. Phys., 41, 195108 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/19/195108]
  13. S. D. Han, H. G. Moon, M. S. Noh, J. J. Pyeon, Y. S. Shim, S. Nahm, J. S. Kim, K. S. Yoo, and C. Y. Kang, Sens. Actuators, B, 241, 40 (2017). [DOI: https://doi.org/10.1016/j.snb.2016.10.029]