• 제목/요약/키워드: Ethanol Productivity

검색결과 190건 처리시간 0.02초

Ethanol Production from Tapioca Hydrolysate by Batch and Continuous Cell Retention Cultures (회분 및 연속세포유지 배양에 의한 타피오카당화액으로부터의 에탄올생산)

  • 이용석;이우기
    • KSBB Journal
    • /
    • 제10권5호
    • /
    • pp.598-603
    • /
    • 1995
  • Batch and continuous cell retention cultures were carried out using tapioca hydrolysate. In batch culture, reducing sugar of about 180g/$\ell$ was almost consumed in about 36 hours, and the concentration of ethanol produced was about 84g/$\ell$ making the ethanol yield 0.48 g-ethanol/g-(reducing sugar). The final yeast concentration was 8.5${\times}$107 cells/ml(about 2.1g/$\ell$). In a total cell retention culture operated with a dilution rate of 0.18h-1, the yeast concentration, the residual reducing sugar concentration, the ethanol concentration, and the volumetric ethanol productivity were about 40g/$\ell$, about 15g/$\ell$, 81.4g/$\ell$, and 14.7g/$\ell$-h, respectively. In another cell retention culture operated with a dilution rate and a bleed ratio of 0.2h-1 and 0.14, respectively, the yeast concentration increased to 22g/$\ell$ and the ethanol concentration oscillated around 68g/$\ell$. The volumetric ethanol productivity was about 13.6g/$\ell$-h and the residual reducing sugar concentration about 12g/$\ell$ containing glucose of about 4.5g/$\ell$. According to the results of batch fermentation using the solid residue from hydrolysate filtration as the substrate, it seemed to have a certain value. Thus, development of an effective reactor system to produce ethanol from this solid residue is in need.

  • PDF

Screening of Thermotolerant Yeast Strain for Ethanol Fermentation (Ethanol 발효를 위한 내열성 효모 균주의 Screening)

  • Ryu, Beung-Ho;Nam, Ki-Du;Kim, Hae-Sung;Kim, Dong-Seuk;Ji, Young-Ae;Jung, Soo-Ja
    • Microbiology and Biotechnology Letters
    • /
    • 제16권4호
    • /
    • pp.265-269
    • /
    • 1988
  • For the purpose of developing new thermotolerant yeast strains for ethanol fermentation, yeasts were isolated from molasses and screened for their fermentation ability at elevated temperatures. Three candidate strains were screened. These strains preferred pH 5.0 and 34$^{\circ}C$ for their ethanol production. Under such conditions the three strains showed average ethanol productivity of 75g ethanol per liter of fermentation broth in n synthetic medium containing glucose as substrate. These strains were identified as Saccharomyces cerevisiae and Kluveromyces marxianus.

  • PDF

Adaptive Control of Cell Recycled Continuous Bioreactor for Ethanol Production (에탄올 생산을 위한 세포재순환 연속 생물반응기의 적응제어)

  • 이재우;유영제
    • KSBB Journal
    • /
    • 제6권3호
    • /
    • pp.263-270
    • /
    • 1991
  • The optimal cell concentration and dilution rate for maximum ethanol productivity were obtained using dynamic simulation in cell recycled continuous bioreactor. The good control performance was observed using rule-based STR (self-tuning regulator) compared to conventional STR. Rule-base contained the scheme to implement the STR in an efficient on-off way and the scheme for the controlled variable to reach the optimal value in a short time. Since a mathematical model was used to analyze and estimate the changes of the state variables and the parameters, it was possible to understand the physical meaning of the system.

  • PDF

Production of Emulsan by Acinetobacter calcoaceticus RAG-1 under Various Culture Modes (여러 배양방법하에서 Acinetobacter calcoaceticus RAG-1에 의한 Emulsan의 생산)

  • 강병철;이필경장호남
    • KSBB Journal
    • /
    • 제6권4호
    • /
    • pp.389-394
    • /
    • 1991
  • Emulsan is an extracellular emulsifying agent produced by the hydrocarbon-degrading Acinetobacter species RAG-1. In this study emulsan production of Acinetobacter calcpaceticus RAG-1 was investigated under various culture modes such as batch, fed-batch, membrane cell recycle, and continuous culture. The productions of emulsan under both ethanol-sufficient fed-batch and membrane cell recycle cultures were all 15.0U/ml, which was 53% increase in emulsan activity compared to that of pH controlled batch culture. Emulsan production was found to be strongly dependent on the residual ethanol concentration. In continuous culture the emulsan productivity increased with dilution rate.

  • PDF

Optimization of Conditions for Extractive Ethanol Fermentation in an Aqueous Two Phase System (수성이상계 에탄올 추출발효 조건의 최적화에 관한 연구)

  • 김진한;허병기;목영일
    • Microbiology and Biotechnology Letters
    • /
    • 제22권5호
    • /
    • pp.531-537
    • /
    • 1994
  • This study was undertaken with objective of optimizing the conditions of fermentation in an aqueous two-phase system which is composed of polyethylene glycol (PEG) 20000 and crude dextran (Dx). The data were obtained and analyzed using the Box-Wilson's experimental design protocol and the response surface methodology. To reach this end a multilinear polynomial regres- sion model was developed, which can be utilized for the purpose of optimizing the extractive fermentation. Optimum conditions for batch fermentation with aqueous two phase system were found to be at 4.2~5.4% PEG/3.2~4.2% Dx range. The composition of the center was 4.8% PEG/ 3.6% Dx. Optimum operating conditions for initial sugar concentration and fermentation time were approximately 160 g/l, and 21~22 hr, respectively. Fermentation in the aqueous two phase system composed of 5% PEG/4% Dx showed increase of 23% in ethanol concentration, of 9.5% in ethanol yield, and of 19% in ethanol productivity as compared to the case of fermentation of neat Jerusalem artichoke juice.

  • PDF

Studies on the Immobilization of Saccharomyces cerevisiae for Ethanol Production (효모의 Alginate 고정화에 관한 연구)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • 제19권4호
    • /
    • pp.390-397
    • /
    • 1991
  • Ethanol production by calcium alginate-immobilized baker's yeast (Saccharor/tyces cereviszae) was studied in the batch fermentation using glucose medium as a feed. Immobilied cells were stable between $30^{\circ}C$ and $40^{\circ}C$ whereas free cells were stable between $30^{\circ}C$ and $37^{\circ}C$ The beads were showed constant ethanol productivity during 720 hours (30 days) over. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration of broth in fermentation. Initial glucose concentrations employed were 50, 100, 150 and 200 g/l, respectively. In 15% gucose medium, maximum specific growth rate, maximum ethanol yield and ethanol concentration were observed as 0.092 $h^{-1}$, 0.45, 67.5 g/l, respectively.

  • PDF

Bioethanol Production from Eucheuma spinosum using Various Yeasts (Eucheuma spinosum으로부터 다양한 효모를 이용한 바이오에탄올 생산)

  • Kim, Min-Ji;Kim, Jung-Soo;Ra, Chae Hun;Kim, Sung-Koo
    • KSBB Journal
    • /
    • 제28권5호
    • /
    • pp.315-318
    • /
    • 2013
  • Ethanol fermentations were performed using separate hydrolysis and fermentation (SHF) processes with monosaccharides from pretreated seaweed, Eucheuma spinosum as the biomass. The pretreatment was carried out with 11% (w/v) seaweed slurry and 150 mM $H_2SO_4$ at $121^{\circ}C$ for 40 min. Enzyme hydrolysis after $H_2SO_4$ pretreatment was performed with Celluclast 1.5 L at $45^{\circ}C$ for 24 h. Five % active charcoal were added to hydrolysate to removed 5-hydroxy methylfurfural. Ethanol fermentation with 11% (w/v) seaweed hydrolysate was performed for 72~96 h using Kluyvermyces marxianus, Pichia stipits, Saccharomyces cervisiae and Candida tropicalis. Ethanol concentration was reached to 18 g/L by K. marxianus, 16 g/L by P. stipitis, 15 g/L by S. cerevisiae and 10 g/L by C. tropicalis, respectively. The ethanol yield from total monosugar was obtained 0.50 and ethanol productivity was obtained 0.38 g/L/h by K. marxianus.

Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating (마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교)

  • Song, Myoung-Ki;Na, Choon-Ki
    • New & Renewable Energy
    • /
    • 제9권2호
    • /
    • pp.5-14
    • /
    • 2013
  • The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

Ethanol Fermentation of Corn Starch by a Recombinant Saccharomyces cerevisiae Having Glucoamylase and $\alpha$-Amylase Activities

  • Lee, Dae-Hee;Park, Jong-Soo;Ha, Jung-Uk;Lee, Seung-Cheol;Hwang, Yong-Il
    • Preventive Nutrition and Food Science
    • /
    • 제6권4호
    • /
    • pp.206-210
    • /
    • 2001
  • Starch is an abundant resource in plant biomass, and it should be hydrolyzed enzymatically into fermentable sugars for ethanol fermentation. A genetic recombinant yeast, Saccharomyces cerevisiae GA-7458, was constructed by integrating the structural gene of both $\alpha$-amylase from Bacillus stearothermophilus and the gene (STA1) encoding glucoamylase from S. diastaticus into the chromosome of S. cerevisiae SH7458. The recombinant yeast showed active enzymatic activities of $\alpha$-amylase and glucoamylase. The productivity of ethanol fermentation from the pH-controlled batch culture (pH 5.5) was 2.6 times greater than that of the pH-uncontrolled batch culture. Moreover, in a fed-batch culture, more ethanol was produced (13.2 g/L), and the production yield was 0.38 with 2% of corn starch. Importantly, the integrated plasmids were fully maintained during ethanol fermentation.

  • PDF

Alcohol Production by Extractive Fermentation in a Continuous Bioreactor (연속 생물반응기 안에서 유출 발효에 의한 알코올 생산)

  • 김재형;전순배이기영김동운
    • KSBB Journal
    • /
    • 제4권1호
    • /
    • pp.21-30
    • /
    • 1989
  • Lauryl alcohol was used as extracting solvent of ethanol, and its toxicity on the free cells or immobilized cells was tested. To increase ethanol productivity, extractive fermentation method combined with ethanol fermentation and ethanol recovery was applied to the immobilized batch and continuous fermenter. As the concentration of LaOH was increased, the lag phase became longer, but specific growth rate did not change greatly. And a cell entrapment technique could protect the yeast cells against both substrate inhibition and solvent toxicity. When the glucose concentration was 400 g/l and the LaOH/fermentation medium ratio was 4, total ethanol productivity increased with the enhancement of LaOH volume, and maximum productivity was 2.75 g/l.hr in the immobilized batch fermentation.

  • PDF