• Title/Summary/Keyword: Etching profile

Search Result 203, Processing Time 0.03 seconds

Prediction of plasma etching using genetic-algorithm controlled backpropagation neural network

  • Kim, Sung-Mo;Kim, Byung-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1305-1308
    • /
    • 2003
  • A new technique is presented to construct a predictive model of plasma etch process. This was accomplished by combining a backpropagation neural network (BPNN) and a genetic algorithm (GA). The predictive model constructed in this way is referred to as a GA-BPNN. The GA played a role of controlling training factors simultaneously. The training factors to be optimized are the hidden neuron, training tolerance, initial weight magnitude, and two gradients of bipolar sigmoid and linear functions. Each etch response was optimized separately. The proposed scheme was evaluated with a set of experimental plasma etch data. The etch process was characterized by a $2^3$ full factorial experiment. The etch responses modeled are aluminum (A1) etch rate, silica profile angle, A1 selectivity, and dc bias. Additional test data were prepared to evaluate model appropriateness. The GA-BPNN was compared to a conventional BPNN. Compared to the BPNN, the GA-BPNN demonstrated an improvement of more than 20% for all etch responses. The improvement was significant in the case of A1 etch rate.

  • PDF

The Development of Silylated Photoresist Etch Process by Enhanced- Inductively Coupled Plasma (Enhanced-Inductively Coupled Plasma (E-ICP)를 이용한 Silylated photoresist 식각공정개발)

  • 조수범;김진우;정재성;오범환;박세근;이종근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.227-232
    • /
    • 2002
  • The silylated photoresist etch process was tested by enhanced-ICP. The comparison of the two process results of micro pattern etching with $0.35\mu\textrm{m}$ CD by E-ICP and ICP reveals that I-ICP has bettor quality than ICP. The etch rate and the RIE lag effect was improved in E-ICP. Especially, the problem of the lateral etch was improved in E-ICP.

Neural Network Recognition of Scanning Electron Microscope Image for Plasma Diagnosis (플라즈마 진단을 위한 Scanning Electron Microscope Image의 신경망 인식 모델)

  • Ko, Woo-Ram;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.132-134
    • /
    • 2006
  • To improve equipment throughput and device yield, a malfunction in plasma equipment should be accurately diagnosed. A recognition model for plasma diagnosis was constructed by applying neural network to scanning electron microscope (SEM) image of plasma-etched patterns. The experimental data were collected from a plasma etching of tungsten thin films. Faults in plasma were generated by simulating a variation in process parameters. Feature vectors were obtained by applying direct and wavelet techniques to SEM Images. The wavelet techniques generated three feature vectors composed of detailed components. The diagnosis models constructed were evaluated in terms of the recognition accuracy. The direct technique yielded much smaller recognition accuracy with respect to the wavelet technique. The improvement was about 82%. This demonstrates that the direct method is more effective in constructing a neural network model of SEM profile information.

  • PDF

A study of nano-scale electrical discharge characteristics for automotive sensor applications

  • Choi, Hae-Woon;Han, Man-Bae
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.235-238
    • /
    • 2009
  • To study the relationship between spark ignition and the gap in the nano-scale region, the electric potential was applied to between a Pt-Ir tip and a gold substrate. The tip was sharpened by electro-chemical etching process in the solution of $CaCl_2;H_2O$ and acetone. The radius of tip was measured to be around 200nm and attached to the scanning probe microscope to control the gap between the tip and the substrate. The electric potential of 10V to 80V was applied to initialize the spark. The gaps and the current profile were measured to analyze the characteristics of spark ignition. A spark sustaining time was measured to be between 50ns and 200ns depending on the applied electric potential and the gap between the electrodes. The continuous electric discharge was successfully sustained up to 1 second of spark or arc time. The developed process can be applicable to the micro-scale fabrication of automotive sensors as a similar concept of GTAW.

  • PDF

Block Copolymer (PS-b-PMMA) Etching Using Cl2/Ar Gas Mixture in Neutral Beam System (Cl2/Ar gas mixture 중성빔을 이용한 블록공중합체 식각 연구)

  • Yun, Deok-Hyeon;Kim, Gyeong-Nam;Seong, Da-In;Park, Jin-U;Kim, Hwa-Seong;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.332-332
    • /
    • 2015
  • Block Copolymer lithography는 deep nano-scale device 제작을 위한 기존의 top-down방식의 photo-lithography를 대체할만한 기술로 많은 연구가 진행되고 있다. polystyrene(PS)/poly-methyl methacrylate (PMMA)로 구성된 BCP의 nano-scale PS mask는 일반적인 플라즈마 공정에 쉽게 damage를 입는다. 중성빔 식각을 이용하여 식각 공정 중 발생하는 BCP의 degradation을 감소시키고, 비등방성 식각 profile을 얻을 수 있으며 sidewall roughness(SWR)와 sidewall angle(SWA)가 향상되는 것을 알 수 있었다.

  • PDF

Waveguides Fabrication for Optical Integrated Devices Application on Relaxor-ferroelectric $Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_3$Single Crystal (완화형 강유전체$Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_3$ 단결정의 광 집적소자 응용을 위한 도파로 제작)

  • Yang, Woo-Seok;Lee, Sang-Goo;Koo, Kyoung-Hwan;Huh, Hyun;Yoon, Dae-Ho;Lee, Han-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.546-547
    • /
    • 2002
  • Ni thin film on the PMN-PT crystal wafer were deposited by using E-beam evaporator technique. Deposited film was patterned by UV-lithography and etching and was in-diffused at 300~600C. Diffusion profile of Ni ions in PMN-PT was measured by secondary ion mass spectroscopy (SIMS).

  • PDF

TCAD Simulation of Silicon Pillar Array Solar Cells

  • Lee, Hoong Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.65-69
    • /
    • 2017
  • This paper presents a Technology-CAD (TCAD) simulation of the characteristics of crystalline Si pillar array solar cells. The junction depth and the surface concentration of the solar cells were optimized to obtain the targeted sheet resistance of the emitter region. The diffusion model was determined by calibrating the emitter doping profile of the microscale silicon pillars. The dimension parameters determining the pillar shape, such as width, height, and spacing were varied within a simulation window from ${\sim}2{\mu}m$ to $5{\mu}m$. The simulation showed that increasing pillar width (or diameter) and spacing resulted in the decrease of current density due to surface area loss, light trapping loss, and high reflectance. Although increasing pillar height might improve the chances of light trapping, the recombination loss due to the increase in the carrier's transfer length canceled out the positive effect to the photo-generation component of the current. The silicon pillars were experimentally formed by photoresist patterning and electroless etching. The laboratory results of a fabricated Si pillar solar cell showed the efficiency and the fill factor to be close to the simulation results.

  • PDF

Speckle Defect by Dark Leakage Current in Nitride Stringer at the Edge of Shallow Trench Isolation for CMOS Image Sensors

  • Jeong, Woo-Yang;Yi, Keun-Man
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.189-192
    • /
    • 2009
  • The leakage current in a CMOS image sensor (CIS) can have various origins. Leakage current investigations have focused on such things as cobalt-salicide, source and drain scheme, and shallow trench isolation (STI) profile. However, there have been few papers examining the effects on leakage current of nitride stringers that are formed by gate sidewall etching. So this study reports the results of a series of experiments on the effects of a nitride stringer on real display images. Different step heights were fabricated during a STI chemical mechanical polishing process to form different nitride stringer sizes, arsenic and boron were implanted in each fabricated photodiode, and the doping density profiles were analyzed. Electrons that moved onto the silicon surface caused the dark leakage current, which in turn brought up the speckle defect on the display image in the CIS.

Modeling of CCP plasma with H2/N2 gas (H2/N2 가스론 이용한 CCP 플라즈마 모델링)

  • Shon, Chae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.158-159
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multilayer interconnection layers. In order to reduce the RC delay, low-k materials will be used for inter-metal dielectric (IMD) materials. We have developed self-consistent simulation tool that includes neutral-species transport model, based on the relaxation continuum (RCT) model. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal steady state profile could be obtained.

  • PDF

MICROLEAKAGE OF RESILON: EFFECTS OF SEVERAL SELF-ETCHING PRIMER (Resilon을 이용한 근관충전 시 수종의 치면처리제에 따른 미세누출 평가)

  • O, Jong-Hyeon;Park, Se-Hee;Shin, Hye-Jin;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The purpose of this study was to compare the apical micro leakage in root canal filled with Resilon by several self-etching primers and methacrylate-based root canal sealer. Seventy single-rooted human teeth were used in this study. The canals were instrumented by a crown-down manner with Gate-Glidden drills and .04 Taper Profile to ISO #40. The teeth were randomly divided into four experimental groups of 15 teeth each according to root canal filling material and self-etching primers and two control groups (positive and negative) of 5 teeth each as follows: group 1 - gutta percha and $AH26^{(R)}$ sealer: group 2 - Resilon, $RealSeal^{TM}$ primer and $RealSeal^{TM}$ sealer: group 3-Resilon, Clearfil SE $Bond^{(R)}$ primer and $RealSeal^{TM}$ sealer group 4-Resilon, $AdheSe^{(R)}$ primer and $RealSeal^{TM}$ sealer. Apical leakage was measured by a maximum length of linear dye penetration of roots sectioned longitudinally by diamond disk. Statistical analysis was performed using the One-way ANOVA followed by Scheffe's test. There were no statistical differences in the mean apical dye penetration among the groups 2, 3 and 4 of self-etching primers. And group 1, 2 and 3 had also no statistical difference in apical dye penetration. But, there was statistical difference between group 1 and 4 (p < 0.05). The group 1 showed the least dye penetration. According to the results of this study, Resilon with self-etching primer was not sealed root canal better than gutta precha with $AH26^{(R)}$ at sealing root canals. And there was no significant difference in apical leakage among the three self-etching primers.