• 제목/요약/키워드: Etching glass

Search Result 258, Processing Time 0.025 seconds

Optimization of Glass Wafer Dicing Process using Sand Blast (Sand Blast를 이용한 Glass Wafer 절단 가공 최적화)

  • Seo, Won;Koo, Young-Mo;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of $500{\mu}m's$ thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence.

Efficiency of Photovoltaic Cell with Random Textured Anti Glare (RTAG) Glass

  • Kim, Geon Ho;Jeon, Bup Ju
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.133-137
    • /
    • 2016
  • The surface treatment of cover glass for conversion efficiency of photovoltaic cell is important to reduce reflectivity and to increase the incident light. In this work, random textured anti glare (RTAG) glass was prepared by wet surface coating method. Optical properties due to the changes of surface morphology of RTAG glass were compared and conversion efficiency of photovoltaic cell was researched. Grain size and changes of surface morphologies formed with surface etching time greatly affected optical transmittance and transmission haze. Current density (Jsc) were high at the condition when surface morphologies reflection haze were low and transmission haze were high. Jsc was $40.0mA/cm^2$ at glancing angle of $90^{\circ}$. Incidence light source was strongly influenced by surface treatment of cover glass at high incidence angle but was hardly affected light source at the low angle of incidence.

Study of SF6/Ar plasma based textured glass surface morphology for high haze ratio of ITO films in thin film solar cell

  • Kang, Junyoung;Hussain, Shahzada Qamar;Kim, Sunbo;Park, Hyeongsik;Le, Anh Huy Tuan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.2-430.2
    • /
    • 2016
  • The front transparent conductive oxide (TCO) films in thin fill solar cell should exhibit high transparency, conductivity, good surface morphology and excellent light scattering properties. The light trapping phenomenon is limited due to random surface structure of TCO films. The proper control of surface structure and uniform cauliflower TCO films may be appropriate for efficient light trapping. We report light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high roughness and haze ratio of ITO films. It was observed that the variation of etching time, pattern size and Ar flow ratio during ICP-RIE process were important factors to improve the diffused transmittance and haze ratio of textured glass. The ICP-RIE textured glass showed low etching rates due to the presence of metal elements like Al, B, F and Na. The ITO films deposited on textured glass substrates showed the high RMS roughness and haze ratio in the visible wavelength region. The change in surface morphology showed negligible influence on electrical and structural properties of ITO films. The ITO films with high roughness and haze ratio can be used to improve the performance of thin film solar cells.

  • PDF

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System (Remote 플라즈마에서 위치 및 반응기체에 따른 PMMA의 식각 특성 분석)

  • Ko, Cheonkwang;Lee, Wongyu
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.483-488
    • /
    • 2006
  • Etching process of PMMA (Polymethyl Methacrylate) on glass surface was investigated by dry etching technique using remote plasma. To determine the etching characteristics, the remote plasma etching was conducted for various process parameters such as plasma power, reaction gas and distance from plasma generation. As the distance from the plasma generation was increased, the etch rate of PMMA was linearly decreased by radical density in plasma. PMMA has removed by reactive radicals in the plasma. The etch rate increased with plasma power because of more reactive radicals. The etch rate and surface roughness of PMMA increased with $O_2$ concentration in the etchant.

An Environment-Friendly Surface Pretreatment of ABS Plastic for Electroless Plating Using Chemical Foaming Agents

  • Kang, Dong-Ho;Choi, Jin-Chul;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.174-177
    • /
    • 2010
  • We have developed an environment-friendly etching process, an alternative to the dichromic acid etching process, as a pretreatment of acrylonitrile-butadiene-styrene (ABS) plastic for electroless plating. In order to plate ABS plastic in an electroless way, there should be fine holes on the surface of the ABS plastic to enhance mechanically the adhesion strength between the plastic surface and the plate. To make these holes, the surface was coated uniformly with dispersed chemical foaming agents in a mixture of environmentally friendly dispersant and solvent by the methods of dipping or direct application. The solvent seeps into just below the surface and distributes the chemical foaming agents uniformly beneath the surface. After drying off the surface, the surface was heated at a temperature well below the glass transition temperature of ABS plastic. By pyrolysis, the chemical foaming agents made fine holes on the surface. In order to discover optimum conditions for the formation of fine holes, the mixing ratio of the solvent, the dispersant and the chemical foaming agent were controlled. After the etching process, the surface was plated with nickel. We tested the adhesion strength between the ABS plastic and nickel plate by the cross-cutting method. The surface morphologies of the ABS plastic before and after the etching process were observed by means of a scanning electron microscope.

Micro-Processing of Glass Substrates Using a Laser (레이저를 이용한 유리기판의 미세가공(微細加工))

  • Lee, Cheon;Toyoda, Koichi
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1425-1427
    • /
    • 1994
  • Laser ablation of glass substrates (8K-7 and synthetic quartz) using a transversely excited atmospheric (TEA) $CO_2$ laser has been inverstigated to obtain high speed etching. The ablation occurs by local heating of a substrate with a focused TEA-$CO_2$ laser beam. The dependence of ablation rate on pulse count and repetition-rate of laser has been discussed.

  • PDF

Transparent Conductive Oxides for Display Applications

  • Szyszka, B.;Ruske, F.;Sittinger, V.;Pflug, A.;Werner, W.;Jacobs, C.;Kaiser, A.;Ulrich, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-185
    • /
    • 2007
  • We report on our material and process research on ZnO:Al films and on our investigations on wet chemical etching using a variety of etching solutions. We achieve resistivity as low as $750{\mu}{\Omega}cm$ for ZnO:Al films with film thickness of 140 nm. Etching with phosphorous acid allows for accurate fine patterning of the ZnO:Al films on glass substrates.

  • PDF

Design and Fabrication of Capacitive Pressure Sensor (용량형 압력센서의 설계 및 제작)

  • 이승준;김병태;권영수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.561-564
    • /
    • 2000
  • Silicon capacitive pressure sensor has been fabricated by using electrochemical etching stop and silicon-to-glass electrostatic bonding technique. A diaphragm structure is designed to compensate the nonlinear response. A cavity is etched into the silicon to the depth of 2$\mu\textrm{m}$ by anisotropic etching in 20wt.% TMAH solution at 80$^{\circ}C$. A fabricated sensor showed 3.3 pF zero-pressure capacitance, 297 pp.m/mmHg sensitivity, and a 7.4 7%F.S. nonlinear response in a 0-1 kgf/cm$^2$pressure range.

  • PDF

Current status of light trapping in module cover glass for PV module (광 포획 태양전지 모듈 커버용 유리기판 기술 현황)

  • Park, Hyeongsik;Jung, Jaesung;Shin, Myunghun;Kim, Sunbo;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.119-123
    • /
    • 2016
  • We discussed various cover glass substrates available for photovoltaic (PV) modules, and investigated the fabrication methods of light trapping structures for the efficiency enhancement of PV modules: wet and dry etching or laser and direct patternings. We also introduced the analysis of haze at etched glass surfaces as a function of wavelength and also presented a anti-reflection coating technology for PV module.

Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application (Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석)

  • ;;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF