• Title/Summary/Keyword: Estimation techniques

Search Result 1,506, Processing Time 0.037 seconds

Development of Probabilistic Fatality Estimation Code for Railway Tunnel Fire Accidents (철도터널 화재시 승객 생존율 예측을 위한 확률론적 평가코드 개발연구)

  • 곽상록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Tunnel fire accident is one of the critical railway accidents, together with collision and derailment. For the safe operation many tunnel design guidelines are proposed but many Korean railway tunnels do not satisfy these guidelines. For the safety improvement, current safety level is estimated in this study. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, probabilistic safety estimation code is developed.

  • PDF

Estimating reliability of reactor inspection robot using Bayesian Belief Nets

  • Eom, Heung-Seop;Kim, Jae-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.106.1-106
    • /
    • 2002
  • $\textbullet$ Current status of reliability estimation techniques for robot systems $\textbullet$ Description of Bayesian Belief Nets(BBN) With an example $\textbullet$ Description of proposed reliability estimation method which combines all information necessary $\textbullet$ Application example of the method : the reactor inspection robot $\textbullet$ Results from the reliability estimation of reactor inspection robot $\textbullet$ Discussion on the proposed method (advantages and problems) $\textbullet$ Conclusion

  • PDF

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Efficient Technique of Motion Vector Re-estimation in Transcoding (트랜스 코딩에서의 효율적인 움직임 벡터 재추정 기법 연구)

  • 한두진;박강서;유희준;김봉곤;박상희
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.602-605
    • /
    • 2004
  • A novel motion vector re-estimation technique for transcoding into lower spatial resolution is proposed. This technique is based on the fact that the block matching error is proportional to the complexity of the reference block with Taylor series expansion. It is shown that the motion vectors re-estimated by the proposed method are closer to optimal ones and offer better quality than those of previous techniques.

A Study on 2D Human Pose Estimation Techniques (2D Human Pose Estimation 기술 분석)

  • Cha, Jin-Hyuck;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.811-812
    • /
    • 2018
  • 딥러닝 기술의 발전에 따라, 딥러닝을 Human Pose Estimation에 적용하는 연구가 활발하게 수행되고 있다. 본 논문에서는 딥러닝을 이용한 여러 기술 중 가장 활발하게 사용이 되고 있는 Open Pose 와 Deeper Cut 기술의 특성을 분석한다.

A Study on Process Integrated Innovation System for a LNG Industry (휘발성 유기화합물의 배출량 산정 및 관리 소프트웨어 개발)

  • Yi Jonghyeop;Park Hyeonsoo;Lee Sunwoo;Kim Hwayong
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.7-13
    • /
    • 2003
  • Abstract This paper presents new emission mechanism and emission estimation model in volatile organic compounds(VOCs) emission sources. Also classifies applicable emission reduction techniques and presents new economical evaluation method for each techniques. We ultimately developed VEER(VOCs Emission Estimation and Reduction) software, which is backed by above mentioned model, emission source DB, Chemical properties DB, meteorological DB, and emission factor DB. With VEER, users in enterprise, central government and local self-governing body can get reliable emission results easily, and choose suitable emission reduction techniques.

  • PDF

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Spatial Partitioning using filbert Space Filling Curve for Spatial Query Optimization (공간 질의 최적화를 위한 힐버트 공간 순서화에 따른 공간 분할)

  • Whang, Whan-Kyu;Kim, Hyun-Guk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In order to approximate the spatial query result size we partition the input rectangles into subsets and estimate the query result size based on the partitioned spatial area. In this paper we examine query result size estimation in skewed data. We examine the existing spatial partitioning techniques such as equi-area and equi-count partitioning, which are analogous to the equi-width and equi-height histograms used in relational databases, and examine the other partitioning techniques based on spatial indexing. In this paper we propose a new spatial partitioning technique based on the Hilbert space filling curve. We present a detailed experimental evaluation comparing the proposed technique and the existing techniques using synthetic as well as real-life datasets. The experiments showed that the proposed partitioning technique based on the Hilbert space filling curve achieves better query result size estimation than the existing techniques for space query size, bucket numbers, skewed data, and spatial data size.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.