• 제목/요약/키워드: Estimation methods

검색결과 5,547건 처리시간 0.032초

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

The exponential generalized log-logistic model: Bagdonavičius-Nikulin test for validation and non-Bayesian estimation methods

  • Ibrahim, Mohamed;Aidi, Khaoula;Alid, Mir Masoom;Yousof, Haitham M.
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.1-25
    • /
    • 2022
  • A modified Bagdonavičius-Nikulin chi-square goodness-of-fit is defined and studied. The lymphoma data is analyzed using the modified goodness-of-fit test statistic. Different non-Bayesian estimation methods under complete samples schemes are considered, discussed and compared such as the maximum likelihood least square estimation method, the Cramer-von Mises estimation method, the weighted least square estimation method, the left tail-Anderson Darling estimation method and the right tail Anderson Darling estimation method. Numerical simulation studies are performed for comparing these estimation methods. The potentiality of the new model is illustrated using three real data sets and compared with many other well-known generalizations.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.

비선형 측정에 대한 반복 계수측정 기법 (Iterative parameter estimation for nonlinear measurements)

  • 정태호;제창해;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.314-317
    • /
    • 1993
  • In this paper, the IPE(Iterative Parameter Estimation) methods for the nonlinear measurements are proposed. The IPE methods convert the problems of the parameter estimation for the nonlinear measurements to that of the solution of the nonlinear equations approximately and use several iterative numerical solutions, such as fixed points theory, Newton's methods, quasi-Newton's methods and steepest descent techniques. the IPE methods for the nonlinear measurements-in the case of the error estimation for the inertial navigation systems are simulated, and it is found that the estimation errors for the nonlinear measurements decrease rapidly and converge to almost that of the linear LSE(Least Squares Estimation) when the IPE methods are applied.

  • PDF

Estimation of slope , βusing the Sequential Slope in Simple Linear Regression Model

  • Choi, Yong;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.257-266
    • /
    • 2003
  • Distribution-free estimation methods are proposed for slope, $\beta$ in the simple linear regression model. In this paper, we suggest the point estimators using the sequential slope based on sign test and Wilcoxon signed rank test. Also confidence intervals are presented for each estimation methods. Monte Carlo simulation study is carried out to compare the efficiency of these methods with least square method and Theil´s method. Some properties for the proposed methods are discussed.

가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교 (Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests)

  • 손영갑;장현정
    • 대한산업공학회지
    • /
    • 제36권4호
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

Probability Constrained Search Range Determination for Fast Motion Estimation

  • Kang, Hyun-Soo;Lee, Si-Woong;Hosseini, Hamid Gholam
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.369-378
    • /
    • 2012
  • In this paper, we propose new adaptive search range motion estimation methods where the search ranges are constrained by the probabilities of motion vector differences and a search point sampling technique is applied to the constrained search ranges. Our new methods are based on our previous work, in which the search ranges were analytically determined by the probabilities. Since the proposed adaptive search range motion estimation methods effectively restrict the search ranges instead of search point sampling patterns, they provide a very flexible and hardware-friendly approach in motion estimation. The proposed methods were evaluated and tested with JM16.2 of the H.264/AVC video coding standard. Experiment results exhibit that with negligible degradation in PSNR, the proposed methods considerably reduce the computational complexity in comparison with the conventional methods. In particular, the combined method provides performance similar to that of the hybrid unsymmetrical-cross multi-hexagon-grid search method and outstanding merits in hardware implementation.

Comparison of Benefit Estimation Models in Cost-Benefit Analysis: A Case of Chronic Hypertension Management Programs

  • Lim, Ji-Young;Kim, Mi-Ja;Park, Chang-Gi;Kim, Jung-Yun
    • 대한간호학회지
    • /
    • 제41권6호
    • /
    • pp.750-757
    • /
    • 2011
  • Purpose: Cost-benefit analysis is one of the most commonly used economic evaluation methods, which helps to inform the economic value of a program to decision makers. However, the selection of a correct benefit estimation method remains critical for accurate cost-benefit analysis. This paper compared benefit estimations among three different benefit estimation models. Methods: Data from community-based chronic hypertension management programs in a city in South Korea were used. Three different benefit estimation methods were compared. The first was a standard deterministic estimation model; second, a repeated-measures deterministic estimation model; and third, a transitional probability estimation model. Results: The estimated net benefit of the three different methods were $1,273.01, $-3,749.42, and $-5,122.55 respectively. Conclusion: The transitional probability estimation model showed the most correct and realistic benefit estimation, as it traced possible paths of changing status between time points and it accounted for both positive and negative benefits.

Novel estimation based on a minimum distance under the progressive Type-II censoring scheme

  • Young Eun Jeon;Suk-Bok Kang;Jung-In Seo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.411-421
    • /
    • 2023
  • This paper provides a new estimation equation based on the concept of a minimum distance between the empirical and theoretical distribution functions under the most widely used progressive Type-II censoring scheme. For illustrative purposes, simulated and real datasets from a three-parameter Weibull distribution are analyzed. For comparison, the most popular estimation methods, the maximum likelihood and maximum product of spacings estimation methods, are developed together. In the analysis of simulated datasets, the excellence of the provided estimation method is demonstrated through the degree of the estimation failure of the likelihood-based method, and its validity is demonstrated through the mean squared errors and biases of the estimators obtained from the provided estimation equation. In the analysis of the real dataset, two types of goodness-of-fit tests are performed on whether the observed dataset has the three-parameter Weibull distribution under the progressive Type-II censoring scheme, through which the performance of the new estimation equation provided is examined.