• 제목/요약/키워드: Estimation method

검색결과 13,365건 처리시간 0.035초

An alternative method for estimation of annual extreme wind speeds

  • Hui, Yi;Yang, Qingshan;Li, Zhengnong
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.169-184
    • /
    • 2014
  • This paper presents a method of estimation of extreme wind. Assuming the extreme wind follows the Gumbel distribution, it is modeled through fitting an exponential function to the numbers of storms over different thresholds. The comparison between the estimated results with the Improved Method of Independent Storms (IMIS) shows that the proposed method gives reliable estimation of extreme wind. The proposed method also shows its advantage on the insensitiveness of estimated results to the precision of the data. The volume of extreme storms used in the estimation leads to more than 5% differences in the estimated wind speed with 50-year return period. The annual rate of independent storms is not a significant factor to the estimation.

선형변환분할 기법에 의한 새로운 상태추정 앨고리즘 개발에 관한 연구 (A Study on the Development of New State Estimation Algorithm by the Decomposition Method of Linear Transformation)

  • 송길영;김영한;최상규
    • 대한전기학회논문지
    • /
    • 제35권4호
    • /
    • pp.148-155
    • /
    • 1986
  • This paper presents a new decoupled power system state estimation method. The decoupling is achieved via simple linear transformation on power measurements in contrast with the modified fast decoupled state estimation method which assumes decoupling by direct negligence of the off-diagonal blocks of the observation functions. The new estimation method is compared with the modified decoupled state estimation method against IEEE-14 bus model power system and 25 bus model power system in several system conditions. It is observed that the proposed method shows better convergence performance and filtering performance than a modified fast decoupled state estimation.

  • PDF

A Power Estimation Method for ASIPs Considering Data Types of Variables in Application Programs

  • Kim, Tsutomu ura;Shibahara, Shin-ichi;Yoshinori Takeuchi;Masaharu Imai;Akira Kitajima;Michiaki Muraoka
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.387-390
    • /
    • 2000
  • This paper proposes an efficient and accurate power estimation method for Application Specific Instruction set Processors (ASIPs). Proposed method takes advantage of the data types of variables in application program to be executed on the ASIP. According to the experimental results, the efficiency of proposed method was more than 1000 times as high as that of conventional RTL based power estimation method, and the estimation error was within 10% compared to a conventional gate-level accurate power estimation method

  • PDF

딥러닝과 특징 추출 기반 배터리 노화 상태 추정 방법 (Battery State-of-Health Estimation Method based on Deep-learning and Feature Engineering)

  • 장문석;이강석;배성우
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.332-338
    • /
    • 2022
  • This study proposes a battery state-of-health estimation method by applying a feature extraction technique. The technique that can improve estimation performance is the process of identifying and extracting meaningful data. To apply a data-driven-based aging state estimation method to batteries, health indicators are used as training data. However, limitations occur in extracting health indicators from charge/discharge cycles. This study proposes a deep-learning-based battery state-of-health estimation method that applies feature extraction techniques to compensate for this problem. According to the performance evaluation result of the proposed method, it has a low estimation error of 0.3887% based on an absolute error evaluation method.

Pose-graph optimized displacement estimation for structural displacement monitoring

  • Lee, Donghwa;Jeon, Haemin;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.943-960
    • /
    • 2014
  • A visually servoed paired structured light system (ViSP) was recently proposed as a novel estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is proposed in this paper. The PODE method is based on a graph-based optimization technique that considers entire errors at the same time. Moreover, this method does not require any constraints on the movement of the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed method. The results show that the PODE method reduces the propagation errors in comparison with a previous work.

음성 신호를 이용한 시간지연 추정에 미치는 영향들에 관한 연구 (Factors for Speech Signal Time Delay Estimation)

  • 권병호;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.823-831
    • /
    • 2008
  • Since it needs the light computational load and small database, sound source localization method using time delay of arrival(TDOA method) is applied at many research fields such as a robot auditory system, teleconferencing and so on. Researches for time delay estimation, which is the most important thing of TDOA method, had been studied broadly. However studies about factors for time delay estimation are insufficient, especially in case of real environment application. In 1997, Brandstein and Silverman announced that performance of time delay estimation deteriorates as reverberant time of room increases. Even though reverberant time of room is same, performance of estimation is different as the specific part of signals. In order to know that reason, we studied and analyzed the factors for time delay estimation using speech signal and room impulse response. In result, we can know that performance of time delay estimation is changed by different R/D ratio and signal characteristics in spite of same reverberant time. Also, we define the performance index(PI) to show a similar tendency to R/D ratio, and propose the method to improve the performance of time delay estimation with PI.

극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로) (Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method))

  • 우지용;김명석
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.463-477
    • /
    • 2009
  • 극단치 분포의 모수 추정방법으로 최우추정법, 확률가중적률법, 회귀분석법은 기존 연구에서 활발하게 적용되어져 왔다. 그러나 이들 세 가지 추정방법 가운데, 회귀분석법의 우수성은 엄격하게 평가되어진 적이 없다. 본 논문에서는 몬테칼로 시뮬레이션을 통하여 Generalized Extreme Value(GEV) 분포와 Generalized Pareto(GP) 분포의 모수 추정에 회귀분석법 및 다른 추정방법을 적용하여 비교 연구한다. 시뮬레이션 결과, 표본의 크기가 작은 경우 회귀분석 법은 GEV 분포의 위치모수 추정시 편의 측면과 효율성 측면에서 다른 방법보다 우수한 경향을 나타내었다. GP 분포의 규모모수 추정시에는 표본의 크기 가 작을 경우 회귀분석법이 다른 방법보다 작은 편의를 나타내었다. 회귀분석법은 표본의 크기 가 작거나 적당히 큰 경우에도 GEV 분포나 GP 분포의 형태모수 추정시에 형태모수의 값이 -0.4일 경우, 다른 방법보다 우수한 경향을 나타내었다.

Development of tension estimation method without damper modeling error for cable with damper

  • Aiko Furukawa;Yuma Sugimachi;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.127-148
    • /
    • 2024
  • Estimating cable tension is important in the maintenance of cable structures, such as cable-stayed bridges. In practice, the higher-order vibration method based on natural frequencies is used. In recent years, dampers have been installed onto cables to suppress aerodynamic vibration. Because the higher-order vibration method is suitable to cables without a damper, the damper must be removed before using this method. Because damper removal is time-consuming and labor-intensive, a previous study proposed a tension estimation method for a cable with a damper based on the natural frequencies, which does not require the damper's removal. However, the previous method relies on the modeling accuracy of the damper's complex stiffness. The damper design formula, while intended for design purposes, does not consistently reflect the damper's actual complex stiffness. Therefore, the estimation accuracy deteriorates when the damper's actual complex stiffness deviates from the damper design formula. With this background, this paper introduces a novel tension estimation method based on mode shapes, which circumvents damper modeling errors since mode shapes are independent of the damper's complex stiffness. In the numerical verification using 90 models, the proposed method estimated tension accurately with an estimation error within 0.59%. In the experimental verification, the proposed method estimated tension accurately with an estimation error within 4.17% except for one case, while the previous method had an estimation error of 44% when the damper design formula was used. The proposed method was found to be superior to the previous method in terms of accuracy and practicality by numerical simulation and experiment.

Robust 2D human upper-body pose estimation with fully convolutional network

  • Lee, Seunghee;Koo, Jungmo;Kim, Jinki;Myung, Hyun
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.129-140
    • /
    • 2018
  • With the increasing demand for the development of human pose estimation, such as human-computer interaction and human activity recognition, there have been numerous approaches to detect the 2D poses of people in images more efficiently. Despite many years of human pose estimation research, the estimation of human poses with images remains difficult to produce satisfactory results. In this study, we propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was designed to learn and detect the locations of joints via the sequential prediction processing method. Our proposed method was tested and validated for efficient estimation of the human upper-body pose. The obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications.

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.