DOI QR코드

DOI QR Code

An alternative method for estimation of annual extreme wind speeds

  • Hui, Yi (College of civil engineering, Hunan University) ;
  • Yang, Qingshan (Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, School of Civil Engineering, Beijing Jiaotong University) ;
  • Li, Zhengnong (College of civil engineering, Hunan University)
  • Received : 2014.02.18
  • Accepted : 2014.06.16
  • Published : 2014.08.25

Abstract

This paper presents a method of estimation of extreme wind. Assuming the extreme wind follows the Gumbel distribution, it is modeled through fitting an exponential function to the numbers of storms over different thresholds. The comparison between the estimated results with the Improved Method of Independent Storms (IMIS) shows that the proposed method gives reliable estimation of extreme wind. The proposed method also shows its advantage on the insensitiveness of estimated results to the precision of the data. The volume of extreme storms used in the estimation leads to more than 5% differences in the estimated wind speed with 50-year return period. The annual rate of independent storms is not a significant factor to the estimation.

Keywords

References

  1. An, Y. and Pandey, M.D. (2005), "A comparison of methods of extreme wind speed estimation", J. Wind Eng. Ind. Aerod., 93(7), 535-545. https://doi.org/10.1016/j.jweia.2005.05.003
  2. An, Y. and Pandey, M.D. (2007), "The r largest order statistics model for extreme wind speed estimation", J. Wind Eng. Ind. Aerod., 95(3), 165-182. https://doi.org/10.1016/j.jweia.2006.05.008
  3. Buishand, T.A. (1985), "The effect of Seasonal variation and serial correlation on extreme value distribution of rainfall data", J. Clim. Appl. Meteorol., 24, 154-160. https://doi.org/10.1175/1520-0450(1985)024<0154:TEOSVA>2.0.CO;2
  4. Chenga, E. and Yeung, C. (2002), "Generalized extreme gust wind speeds distributions", J. Wind Eng. Ind. Aerod., 90(12-15), 1657-1669. https://doi.org/10.1016/S0167-6105(02)00277-5
  5. Cook, N.J. (1982), "Towards better estimation of extreme winds", J. Wind Eng. Ind. Aerod., 9(3), 295-323. https://doi.org/10.1016/0167-6105(82)90021-6
  6. Cook, N.J. (2004), "Confidence limits for extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 92(1), 41-51. https://doi.org/10.1016/j.jweia.2003.09.037
  7. Cook, N.J., Harris, R.I. and Whiting, R. (2003), "Extreme wind speeds in mixed climates revisited", J. Wind Eng. Ind. Aerod., 91(3), 403-422. https://doi.org/10.1016/S0167-6105(02)00397-5
  8. Cook, N.J. and Harris, R.I. (2004), "Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents", Struct. Saf., 26(4), 391-420. https://doi.org/10.1016/j.strusafe.2004.01.002
  9. Gumley, S.J. and Wood C.J. (1982), "A discussion of extreme wind-loading probabilities", J. Wind Eng. Ind. Aerod., 10(1), 31-45. https://doi.org/10.1016/0167-6105(82)90052-6
  10. Harris, R.I. (1982), "An improved method for the prediction of extreme values of extreme values of wind effects on simple buildings and structures", J. Wind Eng. Ind. Aerod., 9(3), 343-379. https://doi.org/10.1016/0167-6105(82)90023-X
  11. Harris, R.I. (1996), "Gumbel re-visited - a new look at extreme value statistics applied to wind speeds", J. Wind Eng. Ind. Aerod., 59(1), 1-22. https://doi.org/10.1016/0167-6105(95)00029-1
  12. Harris, R.I. (1999), "Improvements to the method of independent storms", J. Wind Eng. Ind. Aerod., 80(1-2), 1-30. https://doi.org/10.1016/S0167-6105(98)00123-8
  13. Harris, R.I. (2004), "Extreme value analysis of epoch maxima-convergence and choice of asymptote", J. Wind Eng. Ind. Aerod., 92(11), 897-918. https://doi.org/10.1016/j.jweia.2004.05.003
  14. Harris, R.I. (2005), "Generalised Pareto methods for wind extremes. Useful tool or mathematical mirage?", J. Wind Eng. Ind. Aerod., 93(5), 341-360. https://doi.org/10.1016/j.jweia.2005.02.004
  15. Harris, R.I. (2009), "XIMIS, a penultimate extreme value method suitable for all types of wind climate", J. Wind Eng. Ind. Aerod., 97(5-6), 1-30. https://doi.org/10.1016/j.jweia.2008.09.001
  16. Harris, R.I. (2014), "A simulation method for the macro-meteorological wind speed and the implications for extreme value analysis", J. Wind Eng. Ind. Aerod., 125, 146-155. https://doi.org/10.1016/j.jweia.2013.12.003
  17. Holmes, J.D. and Moriarty, W.M. (1999), "Application of the generalized pareto distribution to wind engineering", J. Wind Eng. Ind. Aerod., 83(1-3), 1-10. https://doi.org/10.1016/S0167-6105(99)00056-2
  18. Hong, H.P., Li, S.H. and Mara, T.G. (2013), "Performance of the generalized least-squares method for the Gumbel distribution and its application to annual maximum wind speeds", J. Wind Eng. Ind. Aerod., 119, 121-132. https://doi.org/10.1016/j.jweia.2013.05.012
  19. Jensen, M. and Franck, N. (1970), The climate of strong winds in Denmark, Danish Technical Press, Copenhagen.
  20. Karpa, O. and Naess, A. (2013), "Extreme value statistics of wind speed data by the ACER method", J. Wind Eng. Ind. Aerod., 112, 1-10. https://doi.org/10.1016/j.jweia.2012.10.001
  21. Lechner, J.A., Simiu, E. and Heckert, N.A. (1993), "Assessment of 'peaks over threshold' methods for estimating extreme value distribution tails", Struct. Saf., 12(4), 305-314. https://doi.org/10.1016/0167-4730(93)90059-A
  22. Simiu, E. and Heckert, N.A. (1996), "Extreme wind distribution tails: a "peaks over threshold" approach", J. Struct. Eng. - ASCE, 122(5), 539-547. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:5(539)

Cited by

  1. An integrator based wind speed estimator for wind turbine control vol.21, pp.4, 2015, https://doi.org/10.12989/was.2015.21.4.443
  2. Simulation of r Highest-Order Extreme Values of Correlated Random Process vol.142, pp.1, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000965
  3. Estimation of Extreme Wind Load on Structures and Claddings vol.143, pp.9, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001304
  4. A probability-based analysis of wind speed distribution and related structural response in southeast China pp.1744-8980, 2018, https://doi.org/10.1080/15732479.2018.1485710