• 제목/요약/키워드: Estimation error

검색결과 4,228건 처리시간 0.028초

5축 공작기계에서 회전 테이블의 반경 오차 성능 평가 (Performance Evaluation of Radial Error of a Rotary Table at Five-axis Machine Tool)

  • 이광일;양승한
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this paper, the radial error of a rotary table at five-axis machine tool is evaluated by utilizing ISO 230-2 and estimation method using double ball-bar. The geometric error of a rotary table is defined as position dependent geometric errors or position independent geometric errors according to their physical character. Then estimation method of geometric errors using double ball-bar is simply summarized including measurement path, parametric modeling and least squares approach. To estimate representative radial error, offset error, set-up error which affect to the double ball-bar data, mean value of measured data including CCW/CW-direction are used at estimation process. Radial errors are separated from measured data and used for evaluation with ISO 230-2. Finally, suggested evaluation method is applied to a rotary table at five-axis machine tool and its result is analyzed to improve the accuracy of the rotary table.

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

오차공분산을 최소화하는 자이로스코프의 설계 (Design of a gyroscope with minimal error covariance)

  • 강태삼;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.264-267
    • /
    • 1991
  • In this paper, a new application method of the Kalman filter to desigin a gyro is proposed. The role of a gyro is the estimation of an input rate with minimal error covariance. The size of the error covariance depends on gyro's parameters, which makes it possible to use the parameters of gyro to minimze the estimation error covariance. Numerical analysis shows that the error covariance becomes smaller as the spin axis momentum becomes larger and the damping coefficient smaller, but production cost must be considered. Through numerical analysis the parameter set for an acceptable - performance gyro with small cost can be selected.

  • PDF

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

RLS Adaptive IIR Filters Based on Equation Error Methods Considering Additive Noises

  • Muneyasu, Mitsuji;Kamikawa, Hidefumi;Hinamoto, Takao
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.215-218
    • /
    • 2000
  • In this paper, a new algorithm for adaptive IIR filters based on equation error methods using the RLS algorithm is proposed. In the proposed algorithm, the concept of feedback of the scaled output error proposed by tin and Unbehauen is employed and the forgetting factor is varied in adaptation process for avoiding the accumulation of the estimation error for additive noise . The proposed algorithm has the good convergence property without the parameter estimation error under the existence of mea-surement noise.

  • PDF

공간 상관성을 이용한 적응적 움직임 추정 알고리즘 (An Adaptive Motion Estimation Algorithm Using Spatial Correlation)

  • 박상곤;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

A New In-band Full-duplex SIC Scheme Using a Phase Rotator

  • Lee, Haesoon;Kim, Dongkyu;Kim, Jinmin;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.240-245
    • /
    • 2014
  • How well the self-interference cancellation (SIC) technique performs is a primary issue in realizing an in-band full-duplex (FD) wireless communication system. One factor affecting its performance is channel estimation error on the self-interference channel. We propose a new analog SIC scheme which is robust to channel estimation error. It uses phase rotators in the radio frequency (RF) chain. We also derive closed-form equations for the residual self-interference of the proposed and the conventional schemes. The analytical and numerical results show that the residual self-interference under the proposed SIC scheme is less than that using the conventional scheme, even though channel estimation error is present.

고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어 (Sensorless Induction Motor Vector Control Using Stator Current-based MRAC)

  • 박철우;최병태;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.