• Title/Summary/Keyword: Estimation Method

Search Result 13,386, Processing Time 0.042 seconds

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Endoscopic Radial Artery Harvest: Techniques & Results (내시경을 이용한 요골동맥 수확법의 수술 방법과 결과)

  • Jeong, Young-Kyun;Lee, Jong-Tae;Cho, Jun-Yong;Kim, Kyu-Tae;Chang, Bong-Hyun
    • Journal of Chest Surgery
    • /
    • v.39 no.1 s.258
    • /
    • pp.35-41
    • /
    • 2006
  • Background: The radial arteries are being used more often for coronary artery bypass grafting, We tried to the endoscopic radial artery harvest to reduce the cosmetic problems and neurologic complications of the conventional open harvesting and report the techniques and early results. Material and Method: The 86 patients underwent coronary artery bypass grafting between May 2003 and April 2005 had their nondominant radial artery endoscopically removed through a 2 cm incision at the wrist. The radial pedicle was dissected and was divided at antecubial area through a 5 mm counterincision. Result: The 23 patients complained of neuralgias on territory of superficial raidal none but no one complained of neuralgias on territory of lateral antebrachial cutaneous none. There was no functional impairment of the hand. There was no wound complication except a localized hematoma. All patients were contacted by telephone after postoperative 7.9$\pm$3.6 months. The 4 patients still complained of neuralgia. All the patients were satisfied with the aesthetics of the wounds. The multidetectional tomography was done on the 66 patients for the estimation of early patency of radial artery. There were 2 cases of stenosis and a case of occlusion. Conclusion: Endoscopic radial artery harvest had no functional impairment of the hand, lesser rate of neurologic complications and outstanding aesthetics. The results of early patency of the radial artery was similar to conventional methods. Therefore, we think that endoscopic radial artery harvest is the optimal procedure.

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Improved Activity Estimation using Combined Scatter and Attenuation Correction in SPECT (단일광자방출단층촬영 영상에서 산란 및 감쇠 보정에 위한 절대방사능 측정)

  • Lee, Jeong-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.382-390
    • /
    • 1998
  • Purpose: The purpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. Materials and Methods: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) with two energy windows (photopeak window: $126{\sim}154keV$ and scatter window: $101{\sim}123keV$). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC), attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, image contrast [(T-B)/(T+B)] and absolute radioactivity with true values. Results: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, $22{\sim}47%$ for AC, and $2{\sim}16%$ for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10.0cm from the surface, SC+AC underestimated by 24%, NONE 40%. However, AC overestimated by 10%. Conclusion: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correction combind with attenuation correction.

  • PDF

Estimation of Soil CO2 Efflux from an Apple Orchard (사과 과수원에서의 토양 CO2 발생량 평가)

  • Lee, Jae-Man;Kim, Seung-Heui;Park, Hee-Seung;Seo, Hyeong-Ho;Yun, Seok-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • This study was conducted to quantify the soil respiratory $CO_2$ emission (SR) in an apple orchard and to determine its relationship with key environmental factors such as air temperature, soil temperature and soil moisture content. Experiment was made over the period from 23 April 2007 to 31 March 2008 in 'Fuji' apple orchard of National Institute of Horticultural and Herbal Science in Suwon, Gyeonggi-do, Korea. The SR was measured by using the automatic opening/closing chamber system based on a closed method. Diurnal variations in SR showed an increase around 0700 hours with increasing soil temperature, its peak between 1400 and 1500 hours, and then a gradual decrease thereafter. Daily variations in SR depended largely on soil and air temperatures over the year, ranging from 0.8 to 13.7 g $CO_2$ $m^{-2}d^{-1}$. During the rainy spell in summer (July$\sim$Autumn) with higher temperature and more precipitation, the SR was lower than that in the spring (May$\sim$June) with moderate temperature. The SR showed a significant exponential relationship with soil temperature ($r^2=0.800$) and air temperature ($r^2=0.805$), but not with soil moisture content ($r^2=0.160$). The $Q_{10}$ values of SR with annual soil temperature and air temperature were 2.0 and 1.9, respectively. The annually integrated SR was 19.6 ton $CO_2$ $ha^{-1}$.

Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석)

  • Kim, Jeong-Soon;Cho, Yang-Hee;Gwag, Jae-Gyun;Ma, Kyung-Ho;Choi, Yu-Mi;Kim, Jung-Bong;Lee, Jeong-Heui;Kim, Tae-San;Cho, Jong-Ku;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.

Estimation of Ovulation and Optimal Breeding Time Based on Vaginal Cytology and Determination of Reproductive Hormones in Shih-tzu Bitches (Shih-tzu견에서 발정 주기 동안 질세포 검사 및 번식 호르몬 측정에 의한 교배 적기 및 배란 시기의 판정)

  • Kim, B.S.;Oh, K.S.;Kim, J.P.;Bae, C.S.;Kim, S.H.;Kim, J.T.;Park, I.C.;Park, S.G.;Son, C.H.
    • Journal of Embryo Transfer
    • /
    • v.21 no.3
    • /
    • pp.207-216
    • /
    • 2006
  • Vaginal cytology was examined in 12 Shih-tzu bitches to establish the accurate basic data for estimate to the optimal mating time and ovulation time. The mean duration of proestrus and estrus were $9.09{\pm}0.83\;(mean{\pm}SD)$ days and $7.36{\pm}0.47$ days in pregnant bitches. The gestational length in the 12 pregnant bitches was $65.2{\pm}0.5$ days in pregnant bitches when Day 0 was timed from the first day of male acceptance. Characteristic features of vaginal cytology during the estrous cycle were the high proportion of large intermediate cell, superficial cell, anuclear cell and erythrocyte in proestrus, superficial cell, anuclear cell and erythrocyte in estrus, and parabasal cell, small and large intermediate cell and leukocyte in diestrus, respectively. Cornification index (CI) was the high proportion in proestrus and estrus, then it decreased in diestrus and anestrus. When Day 0 was timed from the day of the first male acceptance, the CI peak was Day 2 and maintained above 80% between Day -4 and Day 6 during 11 days, and above 90% between Day -1 and Day 5 during 7 days. In relationship between CI and reproductive hormones, CI showed peak at the first day after plasma estradiol-$17{\beta}$ concentration peak and plasma progesterone concentration was first increased above 4.0 ng/ml at Day 0 which was the first day after CI peak. In conclusion, ovulation in Shih-tzu bitches occurred at the first day after CI peak. Vaginal cytology is the simple and reliable method for estimating estrous cycle, optimal breeding time and ovulation time in Shih-tzu bitches.

Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment (생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석)

  • Yun Jin-Il;Lee Kwang-Hoe
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • Agroclimatic zoning was done for paddy rice culture in North Korea based on a simulation experiment. Daily weather data for the experiment were generated by 3 steps consisting of spatial interpolation based on topoclimatological relationships, zonal summarization of grid cell values, and conversion of monthly climate data to daily weather data. Regression models for monthly climatological temperature estimation were derived from a statistical procedure using monthly averages of 51 standard weather stations in South and North Korea (1981-1994) and their spatial variables such as latitude, altitude, distance from the coast, sloping angle, and aspect-dependent field of view (openness). Selected models (0.4 to 1.6$^{\circ}C$ RMSE) were applied to the generation of monthly temperature surface over the entire North Korean territory on 1 km$\times$l km grid spacing. Monthly precipitation data were prepared by a procedure described in Yun (2000). Solar radiation data for 27 North Korean stations were reproduced by applying a relationship found in South Korea ([Solar Radiation, MJ m$^{-2}$ day$^{-1}$ ] =0.344 + 0.4756 [Extraterrestrial Solar Irradiance) + 0.0299 [Openness toward south, 0 - 255) - 1.307 [Cloud amount, 0 - 10) - 0.01 [Relative humidity, %), $r^2$=0.92, RMSE = 0.95 ). Monthly solar irradiance data of 27 points calculated from the reproduced data set were converted to 1 km$\times$1 km grid data by inverse distance weighted interpolation. The grid cell values of monthly temperature, solar radiation, and precipitation were summed up to represent corresponding county, which will serve as a land unit for the growth simulation. Finally, we randomly generated daily maximum and minimum temperature, solar irradiance and precipitation data for 30 years from the monthly climatic data for each county based on a statistical method suggested by Pickering et a1. (1994). CERES-rice, a rice growth simulation model, was tuned to accommodate agronomic characteristics of major North Korean cultivars based on observed phenological and yield data at two sites in South Korea during 1995~1998. Daily weather data were fed into the model to simulate the crop status at 183 counties in North Korea for 30 years. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to score the suitability of the county for paddy rice culture.

  • PDF

Estimation of Crop Virtual Water in Korea (한국의 농산물 가상수 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Kim, Tae-Gon;Im, Jeong-Bin;Chun, Chang-Hoo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.911-920
    • /
    • 2009
  • Virtual water is defined as the volume of water required to produce a commodity or service. The degree of food self-sufficiency is currently about 27 % in South Korea, so that Korea is one of the largest net virtual water import countries for agricultural product, thus it is necessary to estimate suitable virtual water for South Korea. The objective of this paper is to quantify the agricultural virtual water use (AWU) and virtual water content (VWC) using the method suggested by Chapagain and Hoekstra during the period 1991-2007. To calculate the virtual water content, 44 different crop production quantity and harvested area data were collected for 17 years and FAO Penman-Monteith equation was adapted for computing crop consumptive use of water. As the results, AWU has been estimated at 15.1 billion $m^3$ in average showing a tendency to decrease. Rice has the largest share in the AWU, consuming about 10.1 billion $m^3$/yr which is about 75 % of gross AWU, and the VWC is 1600.1 $m^3$/ton for paddy rice. The largest VWCs of crops are oilseed and tuber crop, and the smallest are leaf and root vegetables. The primary crop production VWC can be used for calculating the VWC of various secondary products using the contribution ratio, therefore the results of this study are expected to be used as basic data for national agricultural water footprint.