Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy

근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석

  • Kim, Jeong-Soon (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Cho, Yang-Hee (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Gwag, Jae-Gyun (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Ma, Kyung-Ho (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Choi, Yu-Mi (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Jung-Bong (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Lee, Jeong-Heui (Genetics & Breeding Division, National Institute of Crop Science, RDA) ;
  • Kim, Tae-San (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Cho, Jong-Ku (FOSS Korea Ltd.) ;
  • Lee, Sok-Young (Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA)
  • 김정순 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 조양희 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 곽재균 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 마경호 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 최유미 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 김정봉 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 이정희 (농촌진흥청 작물과학원 유전육종과) ;
  • 김태산 (농촌진흥청 농업생명공학연구원 유전자원과) ;
  • 조종구 ;
  • 이석영 (농촌진흥청 농업생명공학연구원 유전자원과)
  • Published : 2008.06.30

Abstract

Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.

본 시험은 종자은행이 보유하고 있는 다양한 벼 유전자원의 활용을 촉진하기 위하여 비파괴적인 분석방법의 하나인 근적외선 분광분석법을 이용한 유용유전자원의 대량 선발체계 구축을 위해 실시하였다. 1. NIR스펙트럼은 700 nm 이하의 가시광선 범위에서 다양한 범위의 spectrum을 보였으며, 700 nm에서 2500 nm의 근적외선 파장에서도 spectrum의 차이가 크게 나타났고, 1400 nm에서 전체 spectrum의 정점을 나타냈으며 그 이상의 spectrum에서는 포화현상을 나타내었다. 2. NIR 검량식 작성에 이용된 144점의 선발자원이 가지는 단백질함량의 범위는 $6.5{\sim}9.5%$였으며, 134점의 선발자원이 가지는 아밀로스함량의 범위는 $18.1{\sim}21.7%$이었다. 3. 단백질함량과 아밀로스함량의 실험치(Lab data)와 NIR 데이터의 모집단 분포의 해석과 상관관계에 관한 통계분석 결과, 단백질함량과 아밀로스함량의 $R^2$(RSQ) 값은 각각 0.786과 0.865로 높게 보였으며, 검량식 표준오차(SEC)는 각각 0.442와 2.078로 유의한 값을 보였고, 또한 검량식 검정 표준오차(SECV)도 각각 0.541과 3.106으로 유의한 값을 보였지만 검증시 상관정도(1-VR)는 0.68과 0.70로 검량식 작성시보다 낮은 유의성을 보였다.

Keywords

References

  1. Abrams, S. M., J. S. Shenk, M. O. Westerhaus, and F. E. Barton. 1987. Determination of forage quality by near infeared reflectance spectroscopy: Efficiency of broad based calibration quations. J. Diary Sci.. 70 : 806-813 https://doi.org/10.3168/jds.S0022-0302(87)80077-2
  2. Chikubu, S., S. Watanabe, T. Sugimoto, N. Manabe, F. Sakai, and Y. Taniguchi. 1985. Relation between palatability evaluation of cooked rice and physicochemical properties of rice (part2) establishment of palatability estimation formula of rice by multiple regression analysis. J. of the Japanese Soc. of Starch Sci. 31(1) : 51-60 (in japanese)
  3. Cho, S. Y. 1992. The staple food of rice and Health. Proceedings of the Rural Development Agricultural Conference. pp. 43-72
  4. Choi H. C., H. C. Hong, and B. H. Nahm. 1997. Physicochemical and Structural Characteristics of Grain Associated with Palatability in Japonica Rice. Korean J. Breeding. 29(1) : 15-27
  5. Choi, H. C. 1998. Current achievement and prospect of grain quality improvement in rice breeding. Proceedings of the Korean Society of Crop Science Conference. 1-10
  6. Choi, S. J. and B. Y. Choi. 1974. A study on rice qualityespecially, the amylose content of rice. A thesis of graduate schools of Chungnam National University
  7. Clarke, M. A., E. R. Arias, and C. McDonald-Lewis. 1992. Near infra-red analysis in the sugarcane factory. Sugary Azucar. press. at Ruspam Commun. Inc. USA
  8. Gomez, K. A. 1979. Effect of environment on protein and amylose content of rice, chemical spects of rice grain quality. IRRI. 59-68
  9. Han, C. S., K. S. Yon, and J. R. Warashina. 1998. Development of a constituent prediction model of domestic rice using near infrared refelctance analyzer (II)-Prediction of brown and milled rice protein content and brown rice yield from undried paddy. J. Korean Soc. Agric. Machin. 23(3) : 253-258
  10. Heu, M. H., H. S. Suh, K. H. Kim, S. Z. Park, and H. P. Moon. 1976. The environmental variation of protein content, amylose content and akali digestibility of rice grain. Seoul Nat'l Univ., Coll. of Agric. Bulletin 1(1) : 21-37
  11. Juliano, B. O. 1971. A simplified assay for milled-rice amylose. Cereal Sci. Today 16 : 334-340
  12. Juliano, B. O. 1985. Criteria and tests for rice grain qualities rice: Chemistry and technology. American Association of Cereal Chemists. pp. 443-524
  13. Juliano, B. O. et al. 1979. Proceedings of the workshop on chemicla aspects od rice grain quality. pp. 69-90. IRRI. Los Banos
  14. Juliano, B. O., G. B. Cagampang, L. J. Cruz, and R.G. Santigo. 1964a. Some properties of rice in Southeast Asia Cereal Chem. 41 : 275-286
  15. Juliano, B. O., G. M. Bautista. J.C. Lugay. and A.C. Reyes. 1964b. Studies on the physicochemical properties of rice. jour. Agric. & Food Chem. 12 : 131-138 https://doi.org/10.1021/jf60132a010
  16. Kawamura, S., M. Natsuga, K. Takekura, and K. Itoh. 2003. Development of an automatic rice-quality inspection system. Computers and Electronics in Agriculture. 40 : 115-126 https://doi.org/10.1016/S0168-1699(03)00015-2
  17. Kim, J. M., C. H. Choi, B. K. Min, and J. H. Kim. 1998. Development of prediction model for moisture and protein content of single kenel rice using spectroscopy. J. Korean Soc. Agric. Machin. 23(1) : 49-56
  18. Kim, Y. H., C. S. Kang, and Y. S. Lee. 2004. Quantification of tocopherol and tocotrienol content in rice bran by near infrared reflectance spectroscopy. Korean J. Crop Sci. 49(3) : 211-215
  19. Kwon, Y. R., M. H. Baek, D. C. Choi, J. S. Choi, and Y. G. Choi. 2005. Determination of calibration curve for total nitrogen contents analysis in fresh rice leaves using visible and near infrared spectroscopy. Korean J. Crop Sci. 50(6) : 394-399
  20. Kwon, Y. R., S. H. Cho, Y. E. Song, J. H. Lee, and C. H. Cho. 2006. Nondestructive measurement of chemical compositions in polished rice and brown rice using NIR spectra of hulled rice acquired in transmittance and reflectance modes. Korean J. Crop Sci. 51(5) : 451-457
  21. Lee, B. Y. 1987. Studies on properties of high yield line Korean rice. Ph. D. Thesis : 100-110
  22. Lee, H. B., B. R. Choi, C. S. Kang, Y. H. Kim, and Y. J. Choi. 2001. Determination of seed protein and oil concentration in Kiddny bean by near infrared spectroscopic analysis. Korean J. Crop Sci. 46(3) : 248-252
  23. Moon, S. S., K. H. Lee, and R. K. Cho. 1994. Application of near infrared reflectance spectroscopy in quality evaluation of domestic rice. Korean J. Food Sci. Technol. 26(6) : 718-725
  24. Murray, I. and P. C. Williams, 1987. Chemicla principals of Near Infrared technology. Pages 17-34 in : Near Infrared technology in the agricultural and food industries. P. C. Wiliams and K. H. Norris, eds. American Association of Cereal Chemistries: st. Paul. MN
  25. Natsuga, M., S. Kawamura, and K. Itoh. 1992. Precision and accuracy of near-infrared reflectance spectroscopy in determining constituent content of grain. J. of the Japanese Soci. of Agri. Machinery. 54(6) : 89-64 (in Japanese with English abstract)
  26. Okamoto M, T. Horono, and Ma Sakai. 1992. Relation of nitrogen content and Mg/K ratio of brown rice to stickiness of cooked rice. Japan J. Breed. 42 : 595-603 https://doi.org/10.1270/jsbbs1951.42.595
  27. Park, S. J., H. C. Choi, M. H. Hue, and H. J. Ko. 1993. Improvement of eating quality of rice and development of new materials. Special report of the Rural Development Agricultural. pp. 88-143
  28. Perez, C. M., and B. O. Juliano. 1979. Food Chem. 4
  29. Shibuya, N. 1990. Chemical structure of cell walls of rice grain and grain quality(in Japanese). Nippon Shokuhin Kogyo Gakkaishi 37(9) : 740-748 https://doi.org/10.3136/nskkk1962.37.9_740
  30. Son .J. R., J. H. Kim, J. I. Lee, Y. H. Youn, J. K. Kim, H. G. Hwang, and H. P. Moon. 2002. Trend and further research of rice quality evaluation. Korean J. Crop Sci. 47(5) : 33-54
  31. Song, Y. J., Y. E. Song, N. K. OH, Y. G. Choi, and K. C. Cho. 2006. Relationship between Near Infrared Reflectance Spectra and mechanical snesory score of commercial brand rice produced in Jeonbuk. Korean J. Crop Sci. 51(5) : 42-46
  32. Stephen, R. D., K. S. Mckenzie, and B. Webb. 1996. Quality characteristics in rice by Near Infrared Reflectance analysis of whole grain milled samples. Cereal Chem. 73(2) : 257-263