• 제목/요약/키워드: Estimation GNSS

검색결과 81건 처리시간 0.017초

기준국 수에 따른 다중 위성항법 광역보정시스템의 전리층 지연 추정 성능 분석 (Performance Analysis of Ionospheric Delay Estimation for Multi-Constellation WA-DGNSS According to the Number of Reference Stations)

  • 김동욱;한덕화;윤호;기창돈;서승우;박흥원
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.260-267
    • /
    • 2014
  • 광역보정시스템(WA-DGNSS; wide area differential GNSS)의 정확성을 향상시키기 위해서는 GPS 오차 요인 중 가장 큰 영향을 미치는 전리층 지연 오차에 대한 추정 성능이 향상되어야 한다. 본 논문에서는 전리층 지연 추정 성능 향상을 위해 미국의 GPS, 러시아의 GLONASS, 유럽의 Galileo와 같은 각 국의 다양한 위성항법시스템을 통합하여 광역보정시스템 알고리즘에 적용해보았다. 그리고 기준국 수를 증가시키면서 한반도 지역의 전리층 지연 추정 성능을 시뮬레이션을 통해 분석해보았다. 그 결과 추정에 사용한 측정치의 수가 비슷함에도 불구하고 기준국 수를 증가시키기보다는 다중 위성항법을 사용하는 것이 전리층 지연 추정 성능 향상에 더 효과적임을 확인하였다. 본 논문의 결과는 단일 주파수 SBAS (satellite based augmentation system) 사용자의 전리층 지연 추정 성능을 향상시키기 위한 자료로 활용될 것으로 기대된다.

GNSS 수신기를 위한 낮은 복잡도를 갖는 새로운 반송파 대 잡음 전력비 추정기법 (A Novel Carrier-to-noise Power Ratio Estimation Scheme with Low Complexity for GNSS Receivers)

  • 유승수;백지현;염동진;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.767-773
    • /
    • 2014
  • The carrier-to-noise power ratio is a key parameter for determining the reliability of PVT (Position, Velocity, and Time) solutions which are obtained by a GNSS (Global Navigation Satellite System) receiver. It is also used for locking a tracking loop, deciding the re-acquisition process, and processing advanced navigation in the receiver subsystem. The representative carrier-to-noise power ratio estimation schemes are the narrowband-wideband power ratio method (NW), the MM (Moment Method), and Beaulieu's method (BL). The NW scheme is the most classical one for commercial GNSS receivers. It is often used as an authoritative benchmark for assessing carrier-to-noise power estimation schemes. The MM scheme is the least biased solution among them, and the BL scheme is a simpler scheme than the MM scheme. This paper focuses on the less biased estimation with low complexity when the residual phase noise remains, then proposes a novel carrier-to-noise power ratio estimation scheme with low complexity for GNSS receivers. The asymptotic bias of the proposed scheme is derived and compared with others, and the simulation results demonstrate that the complexity of the proposed scheme is lowest among them, while the estimation performance of the proposed scheme is similar to those of the BL and MM schemes in normal and high gained reception environments.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.

GPS 주파수간 편이 추정정확도 분석 (Estimation Accuracy Analysis of GPS Inter-Frequency Biases)

  • 김민우;김정래;허문범
    • 항공우주시스템공학회지
    • /
    • 제4권1호
    • /
    • pp.19-22
    • /
    • 2010
  • The accuracy and integrity of global navigation satellite systems (GNSS) can be improved by using GNSS augmentation systems. Large ionospheric spatial gradient, during ionosphere storm, is a major threat for using GNSS augmentation systems by increasing the spatial decorrelation between a reference system and users. Ionosphere decorrelation behavior can be analyzed by using dual frequency GPS data. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual(P1 and P2) frequencies and they must be accurately estimated before computing ionosphere delays. GPS network data in Korea is used to compute each receiver's IFB, and their estimation accuracy and variability are analyzed. IFB estimation methodology to apply for ionosphere gradient analysis is discussed.

  • PDF

위성항법 신호 이중주파수간 편이 추정오차 분석 (Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals)

  • 김정래;노정호;이형근
    • 한국항공운항학회지
    • /
    • 제20권3호
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.

고정밀 차량 궤적 추정을 위한 3 차원 CSGNSS/DR 융합 시스템 개발 (Development of 3D CSGNSS/DR Integrated System for Precise Ground-Vehicle Trajectory Estimation)

  • 유상훈;임정민;전종화;성태경
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.967-976
    • /
    • 2016
  • This paper presents a 3D carrier-smoothed GNSS/DR (Global Navigation Satellite System/Dead Reckoning) integrated system for precise ground-vehicle trajectory estimation. For precise DR navigation on sloping roads, the AHRS (Attitude Heading Reference System) methodology is employed. By combining the integrated carrier phase of GNSS and DR sensor measurements, a vehicle trajectory with an accuracy of less than 20cm is obtained even when cycle slip or change of visibility occur. In order to supplement the weak GNSS environment with DR successfully, the DR sensor is precisely compensated for using GNSS Doppler measurements when GNSS visibility is good. By integrating a multi-GNSS receiver with low-cost IMU, a precise 3D navigation system for land vehicles is proposed in this paper. For real-time implementation, a decoupled Kalman filter is employed in the integrated system. Through field experiments, the performance of the proposed system is verified in various road environments, including sloping roads, good-visibility areas, high multi-path areas, and under-ground parking areas.

Orbit Ephemeris Failure Detection in a GNSS Regional Application

  • Ahn, Jongsun;Lee, Young Jae;Won, Dae Hee;Jun, Hyang-Sig;Yeom, Chanhong;Sung, Sangkyung;Lee, Jeong-Oog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.89-101
    • /
    • 2015
  • To satisfy civil aviation requirements using the Global Navigation Satellite System (GNSS), it is important to guarantee system integrity. In this work, we propose a fault detection algorithm for GNSS ephemeris anomalies. The basic principle concerns baseline length estimation with GNSS measurements (pseudorange, broadcasted ephemerides). The estimated baseline length is subtracted from the true baseline length, computed using the exact surveyed ground antenna positions. If this subtracted value differs by more than a given threshold, this indicates that an ephemeris anomaly has been detected. This algorithm is suitable for detecting Type A ephemeris failure, and more advantageous for use with multiple stations with various long baseline vectors. The principles of the algorithm, sensitivity analysis, minimum detectable error (MDE), and protection level derivation are described and we verify the sensitivity analysis and algorithm availability based on real GPS data in Korea. Consequently, this algorithm is appropriate for GNSS regional implementation.

Extending Ionospheric Correction Coverage Area By Using A Neural Network Method

  • Kim, Mingyu;Kim, Jeongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.64-72
    • /
    • 2016
  • The coverage area of a GNSS regional ionospheric delay model is mainly determined by the distribution of GNSS ground monitoring stations. Extrapolation of the ionospheric model data can extend the coverage area. An extrapolation algorithm, which combines observed ionospheric delay with the environmental parameters, is proposed. Neural network and least square regression algorithms are developed to utilize the combined input data. The bi-harmonic spline method is also tested for comparison. The IGS ionosphere map data is used to simulate the delays and to compute the extrapolation error statistics. The neural network method outperforms the other methods and demonstrates a high extrapolation accuracy. In order to determine the directional characteristics, the estimation error is classified into four direction components. The South extrapolation area yields the largest estimation error followed by North area, which yields the second-largest error.

Direction of Arrival Estimation of GNSS Signal using Dual Antenna

  • Ong, Junho;So, Hyoungmin
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.215-220
    • /
    • 2020
  • This paper deal with estimating the direction of arrival (DOA) of GNSS signal using two antennae for spoofing detection. A technique for estimating the azimuth angle of a received signal by applying the interferometer method to the GPS carrier signal is proposed. The experiment assumes two antennas placed on the earth's surface and estimates the azimuth angle when only GPS signal are received without spoofing signal. The proposed method confirmed the availability through GPS satellite placement simulation and experiments using a dual antenna GPS receiver. In this case of using dual antenna, an azimuth angle ambiguity of the received signal occurs with respect to the baseline between two antennas. For this reason, the accurate azimuth angle estimation is limits, but it can be used for deception by cross-validating the ambiguity.

Bearing-only Localization of GNSS Interference using Iterated Consider Extended Kalman Filter

  • Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.221-227
    • /
    • 2020
  • In this paper, the Iterated Consider Extended Kalman Filter (ICEKF) is proposed for bearing-only localization of GNSS interference to improve the estimation performance and filter consistency. The ICEKF is an extended version of Consider KF (CKF) for Iterated EKF (IEKF) to consider an effect of bearing measurement bias error to filter covariance. The ICEKF can mitigate the EKF divergence problem which can occur when linearizing the nonlinear bearing measurement by a large initial state error. Also, it can mitigate filter inconsistency problem of EKF and IEKF which can occur when a weakly observable bearing measurement bias error state is not included in filter state vector. The simulation result shows that the localization error of the ICEKF is smaller than the EKF and IEKF, and the Root Mean Square (RMS) estimation error of ICEKF matches the covariance of filter.