• Title/Summary/Keyword: Estimating procedure

Search Result 404, Processing Time 0.028 seconds

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

Binder Stiffness Effect on Permanent Deformation and Tensile Strength of Asphalt Concretes (바인더 강성이 아스팔트 콘크리트의 인장강도와 소성변형 특성에 미치는 영향 분석)

  • Kim, Hyun-Hwan;Yoo, Min-Yong;Kim, Jin-Chul;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • Since the relatively stiff binder shows a higher tensile strength as well as higher rutting resistance, it is believed that the binder stiffness is an important factor for rutting and tensile strength of asphalt mixtures. The typical tensile property is measured by indirect tensile strength (ITS) test at $25^{\circ}C$ and the rutting resistance is most widely measured by wheel tracking (WT) test at $60^{\circ}C$. The deformation strength ($S_D$) is newly developed property to estimate rut resistance of asphalt concretes at $60^{\circ}C$. The ITS and $S_D$ are very simple to measure by static test techniques, but the WT is measured by repeated loading procedure which requires relatively longer time and more efforts. Since these three properties are highly dependent upon the binder stiffness, it may be possible to estimate one property from another. Therefore, this study investigate the possibility of estimating the rutting characteristics (measured by WT test) by ITS or $S_D$ test, and the ITS by $S_D$. Because of binder stiffness effect, in the WT estimation by ITS, a tendency was observed for the higher ITS mixture to have the lower rut depth, giving $R^2{\fallingdotseq}$0.6, on the average. The ITS estimation by $S_D$ showed $R^2{\fallingdotseq}$0.64, and the WT estimation by SD showed $R^2{\fallingdotseq}$0.84, which is highest correlation among the three. Therefore, it was concluded that there is relatively good possibility of estimating WT result by $S_D$, and even though $R^2$ is somewhat low, there is some correlation between WT and ITS.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Comparison of Methods for Linkage Analysis of Affected Sibship Data (이환 형제 자료에 대한 유전적 연관성 분석 방법의 비교)

  • Go, Min-Jin;Lim, Kil-Seob;Lee, Hak-Bae;Song, Ki-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.329-340
    • /
    • 2009
  • For complex diseases such as diabetes, hypertension, it is believed that model-free methods might work better because they do not require a precise knowledge of the mode of inheritance controlling the disease trait. This is done by estimating the sharing probabilities that a pair shares zero, one, or two alleles identical by descent(IBD) and has some specific branches of test procedure, i.e., the mean test, the proportion test, and the minmax test. Among them, the minmax test is known to be more robust than others regardless of genetic mode of inheritance in current use. In this study, we compared the power of the methods which are based on minmax test and considering weighting schemes for sib-pairs to analyze sibship data. In simulation result, we found that the method based on Suarez' was more powerful than any others without respect to marker allele frequency, genetic mode of inheritance, sibship size. Also, The power of both Suarez- and Hodge-based methods was higher when marker allele frequency and sibship size were higher, and this result was remarkable in dominant mode of inheritance especially.

Research Trend for Improvement of Freight Demand Estimation Methods (화물수요추정방법 개선을 위한 국내외 연구동향 분석 연구)

  • Shin, Seung-Jin;Park, Dong-Joo;Oh, Jeong-Taek;Kim, Si-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.45-58
    • /
    • 2012
  • The traditional four-step demand model has limits in that it cannot reasonably reflect the logistic characteristics of freight transportation system. This is likely to cause problems when estimating the effects of logistics facilities. In order to enhance the reliability and availability of the freight demand estimation procedure it is needed to develop freight demand model which takes into account the logistic characteristics of firms. In the late 1990s, a number of researches on freight demand model considering logistics behaviors began in Europe while a few studies in the area have been conducted recently in Korea. This paper reviews recent advances of the freight model developments in the context of logistic behavior consideration. The main topics include 1) commodity classification, 2) P/C(Production- Consumption) estimation, 3) logistics network representation, 4) logistics chain model, and 5) commodity flow survey. In addition, this paper proposes future direction of the freight demand models with respect to the consideration of logistics characteristics.

Dynamic Responses of Multi-Span Simply Supported Bridges under Bi-Directional Seismic Excitations (2방향 지진하중을 받는 다경간 단순교의 동적거동분석)

  • Lee, Sang-Woo;Kim, Sang-Hyo;Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 2004
  • A Seismic analysis procedure of bi-directional brideg motions is developed by using mechanical bridge model. A three-dimensional mechanical model can consider major phenomena under bi-directional seismic excitations, such as nonlinear pier motion under biaxial bending, pounding and bearing damage due to the rotaion of the superstructure, etc. The analyses utilizing the uni-directional and the bi-directional bridge model for the 3-span simply supported bridge are then performed. The seismic responses in two cases are examined and compared by investigating the relative displacements of each superstructure to both ground and adjacent superstructures and the restoring forces of RC pier. The analysis using either the uni-directional model or bi-directional model is acceptable for estimating the displacement responses of a bridge, but the bi-directional analysis is found to give more conservative results for resisting forces of RC piers. To make general conclusions, therefore, the analysis using the bi-directional bridge model should be performed in evaluating the seismic safety of bridges.

A Proposal of Seismic Failure Probability Estimation Chart of the Korean Small and Medium Sized Earthfill Dams (국내 중소규모 흙댐의 지진 시 파괴확률 산정 도표 제안)

  • Ha, Iksoo;Lee, Soogwun;Kim, Namryong;Lim, Jeongyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • The purpose of this study is to propose a chart that can easily estimate the seismic failure probability of small and medium sized earthfill dams with little geotechnical information. By considering the existing method and procedure for estimating the seismic failure probability of a dam, the zero seismic failure probability curve, on which the seismic probability is zero regardless of the geotechnical properties of the dam, was determined in the form of hyperbola in the dam height and freeboard ratio plane. It was confirmed that the dam height-freeboard ratio distribution pattern of the Korean small and medium sized dams was shaped like a hyperbola like the zero seismic failure probability curve. Therefore, a estimation chart was constructed in which a number of seismic failure probability contours are represented by a number of hyperbolas at regular intervals in the dam height-freeboard ratio plane. The proposed chart was applied to the calculation of the seismic failure probability of two small and midium sized dams with relatively well-managed geotechnical properties and the validity of the chart was confirmed by comparison with the results obtained by the existing procedures and methods. In the future, the proposed chart is expected to be useful in considering investment priorities for maintenance and reinforcement of small and medium sized dams in preparation for earthquakes.

Field Load Test Results and Suggestion of Simple Settlement Estimation Method for Granular Compaction Piles (조립토 다짐말뚝에 대한 현장재하시험 결과 및 간편 침하량 산정방법의 제시)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Jung-Ho;Lee Sang-Kyung;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on tile load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the companion research paper, the method of estimating the settlement of granular compaction piles was proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. In the presented study, to validate a propriety of the previously proposed method, large scale field load tests and three dimensional numerical analyses are performed. The results are analyzed in detail and compared with the predicted settlements by the proposed method. Finally, a simple method to estimate the settlement of granular compaction piles is suggested for an easy application of the practical design.

A Study on the Verification and Improvement to Locate and Determine the Radioactive Contamination Using a Whole Body Counter (전신계측기를 이용한 원전종사자 방사성오염 위치확인과 내부방사능 측정개선에 관한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Whole body counters (WBCs) are used to monitor radiation workers for internal contamination of radionuclides at domestic nuclear power plants (NPPs). A WBC is a scintillation detector using sodium iodide (NaI) and provides the identification of inhaled radionuclide and the measurement of its internal radioactivity in a short time. However, it is often possible to estimate external contamination as internal contamination due to radionuclides attached to the skin of radiation workers and this leads to an excessively conservative estimation of radioactive contamination. In this study, several experiments using a WBC and the Korean humanoid phantom were performed to suggest the more systematic method of discrimination between external and internal contamination. Furthermore, a WBC geometry experiment was conducted to suggest the optimal WBC geometry in consideration of deposited areas inside the body for dominant radionuclides at NPPs. The procedure of measurement and estimation of internal radioactivity for radiation workers at NPPs was improved on the basis of experimental results. Thus, it is expected to prevent from estimating internal exposure dose conservatively owing to the application of accurate whole body counting program to NPPs.

Estimation of Rice Yield by Province in South Korea based on Meteorological Variables (기상자료를 이용한 남한지역 도별 쌀 생산량 추정)

  • Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.599-605
    • /
    • 2019
  • Rice yield (kg 10a-1) in South Korea was estimated by meteorological variables that are influential factors in crop growth. This study investigated the possibility of anticipating the rice yield variability using a simple but an efficient statistical method, a multiple linear regression analysis, on the basis of the annual variation of meteorological variables. Due to heterogeneous environmental conditions by region, the yearly rice yield was assessed and validated for each province in South Korea. The monthly mean meteorological data for the period 1986-2018 (33 years) from 61 weather stations provided by Korean Meteorological Administration was used as the independent variable in the regression analysis. An 11-fold (leave-three-out) cross-validation was performed to check the accuracy of this method estimating rice yield at each province. This result demonstrated that temporal variation of rice yield by province in South Korea can be properly estimated using such concise procedure in terms of correlation coefficient (0.7, not significant). Furthermore, the estimated rice yield well captured spatial features of observation with mean bias of 0.7 kg 10a-1 (0.15%). This method may offer useful information on rice yield by province in advance as long as accurate agro-meteorological forecasts are timely obtained from climate models.