• 제목/요약/키워드: Estimating functions

검색결과 307건 처리시간 0.027초

ROBUST ESTIMATION USING QUASI-SCORE ESTIMATING FUNCTIONS FOR NONLINEAR TIME SERIES MODELS

  • Cha, Kyung-Yup;Kim, Sah-Myeong;Lee, Sung-Duck
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.385-399
    • /
    • 2003
  • We first introduce the quasi-score estimating function and applied the quasi-score estimating function to nonlinear time series models. We proposed the M quasi-score estimating functions bounded functions for the quasi-score estimating functions. Also, we investigated the asymptotic properties of quasi-likelihood estimators and M quasi-likelihood estimators. Simulation results show that the M quasi-likelihood estimators work better than the least squares estimators under the heavy-tailed distributions

Estimation for Autoregressive Models with GARCH(1,1) Error via Optimal Estimating Functions.

  • Kim, Sah-Myeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.207-214
    • /
    • 1999
  • Optimal estimating functions for a class of autoregressive models with GARCH(1,1) error are discussed. The asymptotic properties of the estimator as the solution of the optimal estimating equation are investigated for the models. We have also some simulation results which suggest that the proposed optimal estimators have smaller sample variances than those of the Conditional least-squares estimators under the heavy-tailed error distributions.

  • PDF

A Method of Obtaning Least Squares Estimators of Estimable Functions in Classification Linear Models

  • Kim, Byung-Hwee;Chang, In-Hong;Dong, Kyung-Hwa
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.183-193
    • /
    • 1999
  • In the problem of estimating estimable functions in classification linear models, we propose a method of obtaining least squares estimators of estimable functions. This method is based on the hierarchical Bayesian approach for estimating a vector of unknown parameters. Also, we verify that estimators obtained by our method are identical to least squares estimators of estimable functions obtained by using either generalized inverses or full rank reparametrization of the models. Some examples are given which illustrate our results.

  • PDF

Non-linear distributed parameter system estimation using two dimension Haar functions

  • Park Joon-Hoon;Sidhu T.S.
    • Journal of information and communication convergence engineering
    • /
    • 제2권3호
    • /
    • pp.187-192
    • /
    • 2004
  • A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.

Robustizing Kalman filters with the M-estimating functions

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.99-107
    • /
    • 2018
  • This article considers a robust Kalman filter from the M-estimation point of view. Pak (Journal of the Korean Statistical Society, 27, 507-514, 1998) proposed a particular M-estimating function which has the data-based shaping constants. The Kalman filter with the proposed M-estimating function is considered. The structure and the estimating algorithm of the Kalman filter accompanying the M-estimating function are mentioned. Kalman filter estimates by the proposed M-estimating function are shown to be well behaved even when data are contaminated.

An estimator of the mean of the squared functions for a nonparametric regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.577-585
    • /
    • 2009
  • So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

  • PDF

M-Estimation Functions Induced From Minimum L$_2$ Distance Estimation

  • Pak, Ro-Jin
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.507-514
    • /
    • 1998
  • The minimum distance estimation based on the L$_2$ distance between a model density and a density estimator is studied from M-estimation point of view. We will show that how a model density and a density estimator are incorporated in order to create an M-estimation function. This method enables us to create an M-estimating function reflecting the natures of both an assumed model density and a given set of data. Some new types of M-estimation functions for estimating a location and scale parameters are introduced.

  • PDF

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.

The Estimating Equations Induced from the Minimum Dstance Estimation

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.687-696
    • /
    • 2003
  • This article presents a new family of the estimating functions related with minimum distance estimations, and discusses its relationship to the family of the minimum density power divergence estimating equations. Two representative minimum distance estimations; the minimum $L_2$ distance estimation and the minimum Hellinger distance estimation are studied in the light of the theory of estimating equations. Despite of the desirable properties of minimum distance estimations, they are not widely used by general researchers, because theories related with them are complex and are hard to be computationally implemented in real problems. Hopefully, this article would be a help for understanding the minimum distance estimations better.

  • PDF