• Title/Summary/Keyword: Estimating Position

Search Result 411, Processing Time 0.029 seconds

A Study on the Relative Positioning Technology based on Range Difference and Root Selection (신호원과의 거리 차이와 실근 선택 알고리즘을 이용한 상대위치 인식 기술 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.85-91
    • /
    • 2013
  • For location based service and context awareness services, accurate indoor positioning technology is essential. The TDOA method that uses the range difference between signal source and receivers for estimating the location of the signal source, has estimation error due to measurement error. In this paper, a new algorithm is proposed to select the real root among calculated roots using the range difference information, and the estimated position of the signal source shows good accuracy compared to the existing method.

A Position Estimation of Quadcopter Using EKF-SLAM (EKF-SLAM을 이용한 쿼드콥터의 위치 추정)

  • Cho, Youngwan;Hwang, Jaeyoung;Lee, Heejin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.557-565
    • /
    • 2015
  • In this paper, a method for estimating the location of a quadcopter is proposed by applying an EKF-SLAM algorithm to its flight control, to autonomously control the flight of an unmanned quadcopter. The usefulness of this method is validated through simulations. For autonomously flying the unmanned quadcopter, an algorithm is required to estimate its accurate location, and various approaches exist for this. Among them, SLAM, which has seldom been applied to the quadcopter flight control, was applied in this study to simulate a system that estimates flight trajectories of the quadcopter.

The Driving Trajectory Measurement and Analysis Techniques using Conventional GPS Sensor for the Military Operation Environments (군운용 환경에 적합한 GPS 센서기반 주행궤적 측정 및 분석 기술)

  • Jung, Ilgyu;Ryu, Chiyoung;Kim, Sangyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.774-780
    • /
    • 2017
  • The techniques for driving trajectory calculation and driving trajectory distribution calculation are proposed to analyze the durability of ground vehicles effectively. To achieve this aim, the driving trajectory of a vehicle and the driving trajectory distribution of that are needed, in addition to road profile. The road profiles can be measured by a profilometer but a driving trajectory of a vehicle cannot be acquired effectively due to a large position error from a conventional GPS sensor. Therefore two techniques are proposed to reduce the position error of a vehicle and achieve the distribution of driving trajectory of that. The driving trajectory calculation technique produces relative positions by using the velocity, time and heading of a vehicle. The driving trajectory distribution calculation technique produces distributions of the driving trajectory by using axis transformation, estimating reference line, dividing sectors and plotting a histogram of the sectors. As a results of this study, we can achieve the considerably accurate driving trajectory and driving trajectory distribution of a vehicle.

A Study on method to improve the detection accuracy of the location at Multi-sensor environment (다중센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil;Jung, Ji-Hoon;Jo, Je-Il;Kim, San-Hae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.337-340
    • /
    • 2011
  • In location finding system using spaced multi-sensor, Depending on the signal source's location and the location of the sensors Position estimation accuracy is determined. This phenomenon is called GDOP effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating GDOP using angle of arrivals of multi sensors, and removing sensor error factor.

  • PDF

A Study on the Human Finger Model using Wire-type SMA Actuator (와이어형 형상기억합금 구동기를 이용한 인체 손가락 모델에 대한 연구)

  • Jung, Jin-Woo;Lim, Soo-Choel;Park, Young-Pil;Yang, Hyun-Seok;Park, No-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.891-894
    • /
    • 2005
  • This paper describes a human finger model driven by shape memory alloy(SMA) wires. The finger model has three joints that are similar to human finger. Each joint is actuated with two wires in the antagonistic manner and six wires are used to actuate three finger joint. In order to obtain the desirable finger motion, the diameters of the SMA wires are designed with different diameters by considering the required actuating force and response time. The rotary sensors are used to measure the angle positions of the joints and PWM control using PID algorithm is used to achieve desired angle positions of the finger joints. After estimating the control performance of each finger joint for the desired angle position, the antagonistic motion control of the finger model is experimentally evaluated.

  • PDF

Concurrent Mapping and Localization using Range Sonar in Small AUV, SNUUVI

  • Hwang Arom;Seong Woojae;Choi Hang Soon;Lee Kyu Yuel
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.23-34
    • /
    • 2005
  • Increased usage of AUVs has led to the development of alternative navigational methods that use the acoustic beacons and dead reckoning. This paper describes a concurrent mapping and localization (CML) scheme that uses range sonars mounted on SNUUV­I, which is a small test AUV developed by Seoul National University. The CML is one of such alternative navigation methods for measuring the environment that the vehicle is passing through. In addition, it is intended to provide relative position of AUV by processing the data from sonar measurements. A technique for CML algorithm which uses several ranging sonars is presented. This technique utilizes an extended Kalman filter to estimate the location of the AUV. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the CML for associating the stored targets the sonar returns at each time step. The proposed CML algorithm is tested by simulations under various conditions. Experiments in a towing tank for one dimensional navigation are conducted and the results are presented. The results of the simulation and experiment show that the proposed CML algorithm is capable of estimating the position of the vehicle and the object and demonstrates that the algorithm will perform well in the real environment.

Development of 3D Point Cloud Mapping System Using 2D LiDAR and Commercial Visual-inertial Odometry Sensor (2차원 라이다와 상업용 영상-관성 기반 주행 거리 기록계를 이용한 3차원 점 구름 지도 작성 시스템 개발)

  • Moon, Jongsik;Lee, Byung-Yoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.107-111
    • /
    • 2021
  • A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.

Gyro Signal Processing-based Stance Phase Detection Method in Foot Mounted PDR

  • Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • A number of techniques have been studied to estimate the position of pedestrians in indoor space. Among them, the technique of estimating the position using only the sensors attached to the body of the pedestrian without using the infrastructure is regarded as a very important technology for special purpose pedestrians such as the firefighters. In particular, it forms a research field under the name of Pedestrian Dead Reckoning (PDR). In this paper, we focus on a method for step detection which is essential when performing PDR using Inertial Measurement Unit (IMU) mounted on a shoe. Many researches have been done to detect the stance phase where the foot contacts the ground. Most of these methods, however, have a way to detect the specific size of the sensor signal and require thresholds for these methods. This has the difficulty of changing these thresholds if the user is different. To solve this problem, we propose a stance phase detection method that does not require any threshold value. It is expected that this result will make it easier to commercialize the technology because PDR can be implemented without user-dependent parameter setting.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

An Evaluation Method for the Musculoskeletal Hazards in Wood Manufacturing Workers Using MediaPipe (MediaPipe를 이용한 목재 제조업 작업자의 근골격계 유해요인 평가 방법)

  • Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.