• Title/Summary/Keyword: Estimated evacuation time

Search Result 31, Processing Time 0.023 seconds

A Study on the Performance Criteria of Smoke Control System for Underground Spaces Through Numerical Analysis (수치해석을 통한 지하공간의 제연설비 성능기준 검토)

  • Ahn, Chan-Sol;Chae, Han-Sic;Kim, Hyeung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.356-362
    • /
    • 2008
  • This study is intended to evaluate the characteristics of smoke spreading and the appropriateness of evacuation time extended by operation of smoke control system during fire within the underground space of the building structured in compliance with the smoke control system performance criteria from the local fire safety standard in Korea. As a preceding review of this study, the combustibles was categorized and identified their heat release rates. For validate the estimated values, modeling a single underground shop was carried out. And a numerical analysis both in case of smoke control system in operation and the system not in operation was carried out of underground space. From the viewpoint of securing the evacuation time, the results were compared in an attempt to assess the appropriateness of the fire safety criteria.

  • PDF

A Study on Evacuation of Patients in Hospitals : Part II (병원 피난에 관한 연구 : Part II)

  • Kim Eung-Sik;Lee Jeong-Su;Park Seong-Min;You Hee-Kwon
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.28-36
    • /
    • 2005
  • The goal of this study is establishment of egress parameters and algorithm for estimation of total egress time in hospitals. Therefore, egress parameters should be measured and analyzed via the experiment at many hospitals. In this study, 4 general hospitals were experimented and egress parameters were measured, the comparison between experimental results and estimated total egress time were carried out. The algorithm for estimation of total egress time can be applied to other hospitals.

A study on the evaluation of fire safety according to the ventilation mode in a train fire at the subway platform (지하철 승강장에서 열차 화재시 제연모드에 따른 화재 안전성 평가 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.

Application of Probabilistic Technique for the Development of Fire Accident Scenarios in Railway Tunnel (확률론적 기법을 활용한 철도터널의 화재사고 시나리오의 구성)

  • 곽상록;홍선호;왕종배;조연옥
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.302-306
    • /
    • 2004
  • Many long railway tunnels without emergency evacuation system or ventilation system are under construction or in-use in Korea. In the case of tunnel-fire, many fatalities are occur in current condition. Current safety level is estimated in this study, for the efficient investment on safety. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, accident scenarios and survival ratio under tunnel fire accident are determined for various conditions.

Implementation of Fire Risk Estimation System for various Fire Situations using Multiple Sensors (다중 센서들을 이용한 다양한 화재 상황의 위험도 추정 시스템 개발)

  • Lee, Kwangjae;Lee, Youn-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 2016
  • In this paper, a fire detection system based on quantitative risk estimation is presented. Multiple sensors are used to build a comprehensive indicator that represents the risk of fire quantitatively. The proposed fire risk estimation method consists of two stages which determines the occurrence of fire and estimates the toxicity of the surveillance area. In the first stage, fire is reliably detected under diverse fire scenarios. The risk of fire is estimated in the second stage. Applying Purser's Fractional Effective Dose (FED) model which quantitates harmfulness of toxic gases, the risk of the surveillance area and evacuation time are calculated. A fire experiment conducted using four different types of combustion materials for the verification of the system resulted in a maximum error rate of 12.5%. By using FED calculation and risk estimation methods, the proposed system can detect various signs of fire faster than conventional systems.

A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves (지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

A study on the efficiency advancement for evacuation of the crews by ship structural improvement (선박 구조 개선을 통한 승무원의 피난 효율 향상을 위한 연구)

  • Kim, Wonouk;Lee, Myoungho;Kim, Jongsu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • Onshore great fires can normally be extinguished by firefighters using special firefighting equipment and its suitable method. However, offshore fires on the ships are to be extinguished by the crew without any supports from the onshore. Also, crews working on board are exposed to high risk of emergency evacuation due to the complicated structure arrangement of the ships and different accident types such as fire and ship collisions. As most of damage and loss of life in fire are associated with suffocation, shortening of evacuation time is an important factor to improve a survival rate. In this study, visibility in the accommodation area is analyzed by using the temperature and smoke flow which are obtained by the Fire Dynamic Simulator(FDS) as a Three-Dimensional Fire Analysis program to understand the survival rate of the crew upon the fire. The fire doors for most of ships are designed to close automatically when the fire alarm is activated. These automatic closing of the fire doors is a very effective system to delay the spread of flame and smoke flow for the unmanned spaces of the fire protected area. However, if the crew cannot escape within the estimated time, the crew inside the fire protected area will be damaged a lot. In this paper, the comparative analysis between the evacuations by using the fire door from the fire protected area and the suggested fire shielding structure in this study is carried out by the smoke flow rate and the temperature rise rate.

Evaluation of Civil Defense Evacuation Shelter Locations in Fitness according to the Walking Speed and Changing Floating Population in Time and Space (시공간 유동인구 변화와 보행속도에 따른 민방위 비상 대피시설 위치의 적절성 평가)

  • Park, Jae-Kook
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • This study set out to evaluate the fitness of shelter locations by taking into consideration service zones according to walking speed, the changing population between day and night, and walking routes. Walking speed was defined as 1.6 m/s, 2 m/s based on the cases of previous studies. The changing population between day and night was estimated with the dasymetric mapping technique. Shelter service zones according to walking speed and routes were analyzed with the network of the location allocation model. The findings show some shelters had limits with their capacity according to the changing floating population and walking speed in time and space and raise a need to appoint additional shelters.

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

The Analysis of Flood Propagation Characteristics using Recursive Call Algorithm (재귀호출 알고리듬 기반의 홍수전파 특성 분석)

  • Lee, Geun Sang;Jang, Young Wun;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.63-72
    • /
    • 2013
  • This paper analyzed the flood propagation characteristics of each flood elevation due to failure of embankment in Muju Namdae Stream using recursive call algorithm. A flood propagation order by the flood elevation was estimated by setting destruction point at Beonggu and Chasan small dam through recursive call algorithm and then, the number of grids of each flood propagation order and accumulated inundation area were calculated. Based on the flood propagation order and the grid size of DEM, flood propagation time could be predicted each flood elevation. As a result, the study could identify the process of flood propagation through distribution characteristic of the flood propagation order obtained from recursive call algorithm, and could provide basic data for protection from flood disaster by selecting the flood vulnerable area through the gradient pattern of the graph for accumulated inundation area each flood propagation order. In addition, the prediction of the flood propagation time for each flood water level using this algorithm helped provide valuable information to calculate the evacuation path and time during the flood season by predicting the flood propagation time of each flood water level.