• Title/Summary/Keyword: Essential oils

Search Result 644, Processing Time 0.023 seconds

Antioxidant Activities of Essential Oils from Chamaecyparis obtusa (편백정유의 항산화활성)

  • Park, Mi-Jin;Choi, Won-Sil;Min, Byeong-Cheol;Kim, Ho-Yong;Kang, Ha-Young;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.159-167
    • /
    • 2008
  • This study was carried out to investigate the potential promise of Chamaecyparis obtusa oil as a natural antioxidant. C. obtusa oil and its fractions were subjected to screening for their antioxidant activities by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and ammonium thiocyanate method. In the first case, $IC_{50}$ value of the C. obtusa oil was determined as $40{\mu}{\ell}/m{\ell}$. At $0.5{\mu}{\ell}/m{\ell}$ concentration level, free radical scavenging effect of fraction G determined as 66.94% was the highest among the fractions of C. obtusa oil. In the ammonium thiocyanate method, essential oil of C. obtusa and its fraction C, D, and E showed activities of 72.0%, 71.2%, 71.9% and 71.1%, respectively. Fraction G, most active fraction, was mainly consisted of $\alpha$-terpineol, elemol, widdrol and $\alpha$-cadinol.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Selection of the high yield capacity of Hwangchil lacquer and identification of aromatic components in essential oil of Dendropanax morbifera Lev. (황칠수액 분비 우수개체 선발 및 방향성 정유성분 조사)

  • Ahn, Jun-Cheul;Kim, Min-Young;Kim, Ok-Tae;Kim, Kwang-Soo;Kim, Sung-Ho;Kim, Sea-Hyun;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2002
  • We investigated the high yield capacity of Hwangchil lacquer for selection and identification of major aromatic components of the selected trees as well. The Hwangchil lacquer showed the difference yields by different habitat, tree ages and individual character. The selected trees showed high yield capacity of Hwangchil lacquer. We also investigated the essential oil contents and its the main components to analysis the potent of mass propagation. The major compounds were 1,6-atadiene-3-ol., ${\alpha}-terpinene,\;{\alpha}-cubebene,\;{\alpha}-ylangene,\;{\alpha}-copane,\;{\beta}-elemene,\;germacrene-D,\;{\beta}-selinene,\;{\alpha}-selinene,\;{\delta}-cadinene,{\gamma}-cardinene$, germacrene B, germacrene D-4-ol. The most principle component was germacrene D among them respectively. However, the difference of relative content ratio of each major compound was showed by individuals, population and native areas in the selected trees.

Effects of Cultivation Methods on Yield and Essential Oils of Chrysanthemum indicum L. (Gamgug)

  • Lee, Chang-Hoon;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • Chrysanthemum indicum L. (Gamgug) has been examined to study their flowering habits, yields and bioactive compounds under different planting densities and mowing dates. The planting density experiment revealed a significantly increasing stem diameter, number of flowers and branches with decreasing plant density in the $100\;cm{\times}30\;cm$ and $130\;cm{\times}30\;cm$ treatments as compared to $70\;cm{\times}30\;cm$ treatments, but not plant height, leaf and flower width. On the other hand, the mowing date experiment showed that growth characteristics of plants were similar to the control plants (not mowing) and June 20 treatment, but July 20 treatments had significantly smaller than the control. The weights (g $plant^{-1}$) of dry flowers were affected by the planting density and mowing date. The flower yield of $586\;kg\;ha^{-1}$ obtained at $100\;cm{\times}30\;cm$ density was 11% and 22% higher than that of $120\;cm{\times}30\;cm$ and $70\;cm{\times}30\;cm$ treatments, respectively. The yield of dry flowers in the control and June 20 mowing date ranged $495-508\;kg\;ha^{-1}$, which is 40-42% higher than the yield in the July 20 treatments. The amount of essential oil (g $plant^{-1}$) in medically valuable flowerheads of C. indicum L. was statistically different between mowing dates but not among planting densities. The study showed that planting density and the mowing date could increase yields of flowerheads. An optimum planting density of $100\;cm{\times}30\;cm$ and mowing date of on or before June 20 is recommended for C. indicum L.

Insect Repellency and Crop Productivity of Essential Oil Films

  • KIM, Jin Gu;KANG, Seok Gyu;MOSTAFIZ, Md Munir;LEE, Jeong Min;LEE, Kyeong-Yeoll;HWANG, Tae Kyung;LIM, Jin Taeg;KIM, Soo Yeon;LEE, Won Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.95-106
    • /
    • 2020
  • The purpose of this study was to determine the effects of coniferous essential oils (EOs) blended films on insect repellence and crop productivity. Low-density polyethylene (LDPE) film is widely used, especially in agriculture and for food packaging. Ethylene vinyl acetate was blended with LDPE to reduce volatilization of EOs. An EO from Japanese cypress (Chamaecyparis obtusa) was incorporated into the blend film to conduct field research on antimicrobial and insect repellent properties. Among the various concentrations of EO, the highest concentration (2.5%) showed the highest efficiency in terms of pesticidal activity. The ability to inhibit microbial growth can be explained by the lipophilic properties of the EO component, and many studies have already demonstrated this. Agricultural films containing all types of EO have been tested on various crops such as chili, cucumber, Korean melon and have been able to verify their effectiveness in avoiding pests and increasing yields. From these results, it was found that it is reasonable to use a modified film such as a composite film containing an EO for agriculture. Thus, the modified film containing EO has undoubtedly shown impressive potential for reducing the use of pesticides in a variety of ways, not only for agricultural mulching film but also for food and agricultural product packaging. This product is an environmentally friendly chemical and is safe for agricultural and industrial and food packaging applications, among others. In particular, the use of agricultural films significantly reduces the use of pesticides, suggesting that farmers can increase their incomes by reducing working hours and costs, and increasing production.

Nanoemulsion application in meat product and its functionality: review

  • Tri Ujilestari;Andi Febrisiantosa;Mohammad Miftakhus Sholikin;Rina Wahyuningsih;Teguh Wahyono
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.275-292
    • /
    • 2023
  • Nanotechnology in the food industry can increase the effectiveness of food ingredients. Nanotechnology can increase the bioavailability and absorption of bioactive compounds, enhance their stability, and improve the sensory quality of the product. Processed meat products are easily damaged due to bacterial activity. Advanced nanoemulsions as a meat preservative are nanoemulsions that can be used as preservative agents in meat products, particularly essential oil nanoemulsions, due to their antimicrobial and antioxidant properties. Its application is still limited to foods made from meat products. Therefore, this literature review examines nanoemulsion and its application in meat products and functionality improvement. Also, in the future, nanoemulsions in meat products must be made safe, and the government and businesses must work together to build consumer trust. It can be concluded that essential oil-based nanoemulsion has the potential to be used as an additive in meat products because it can kill bacteria, fight free radicals, improve flavor, and keep food fresh. Nanoemulsion is challenging in the meat industry because it can be toxic due to its tiny droplets (under 200 nm).

Fatty Acid and Volatile Oil Compositions of Allomyrina dichotoma Larvae

  • Youn, Kumju;Kim, Ji-Young;Yeo, Hyelim;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.310-314
    • /
    • 2012
  • Thirty-two different volatile oils were identified from Allomyrina dichotoma (A. dichotoma) larvae by gas chromatography/mass spectrometry (GC/MS). The major volatile components were 2,2,4-trimethyl-3-carboxyisopropyl pentanoic acid isobutyl ester (5.83%), phenol,2,6-bis(a,a-dimethyl ethyl)-4-(1-methyl-1-phenylethyl) (5.72%), heptacosane (5.49%) and phenol,2,4-bis(1-methyl-1-phenylethyl) (5.47%). The composition of the fatty acids in A. dichotoma larvae was also determined by gas chromatography (GC) and fourteen constituents were identified. Oleic acid (19.13%) was the most abundant fatty acid followed by palmitic acid (12.52%), palmitoleic acid (3.71%) and linoleic acid (2.08%) in 100 g of A. dichotoma larvae on a dry weight basis. The quantity of unsaturated fatty acids (64.00%) were higher than that of saturated ones (36.00%). The predominant fatty acids in A. dichotoma consist of monounsaturated fatty acid (MUFA, 57.70%) such as oleic acid, myristoleic acid and palmitoleic acid, followed by saturated fatty acids (36.00%) and polyunsaturated fatty acids (PUFA, 6.50%). In particular, the presence of essential fatty acids, such as linoleic (5.30%) and linolenic acid (0.40%) give A. dichotoma larvae considerable nutritional and functional value and it may be a useful source for food and/or industrial utilization.

Flavor Components of the Needle Oils from Pinus rigida Mill and Pinus densiflora Sieb & Zucc (리기다송(Pinus rigida Mill)과 적송(Pinus densiflora Sieb & Zucc)잎 정유의 향기성분)

  • Choi, Kyoung-Sook;Park, Hyoung-Kook;Kim, Jung-Han;Kim, Yong-Taik;Kwon, Ik-Boo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.769-773
    • /
    • 1988
  • The needle oils of Pious rigida Mill and Pious densiflora Sieb & Zucc were analyzed by gas chromatography/mass spectrometry. The major components of Pinus rigida were ${\alpha}-pinene$, 1-hexen-3-ol formate, sabinene, ${\beta}-pinene,\;{\alpha}-terpineol$ and ${\beta}-caryophyllene,\;{\alpha}-pinene$, bornyl acetate, ${\beta}-pinene$ and ${\beta}-hpellandrene$ were the major components fo Pious densiflora. Pious densiflora had sweeter and more greenish note than Pines rigida because the bornyl acetate content of Pious densiflora was about three times more than that of Pious rigida.

  • PDF

PD Signal Time-Frequency Map and PRPD Pattern Analysis of Nano SiO2 Modified Palm Oil for Transformer Insulation Applications

  • Arvind Shriram, R.K.;Chandrasekar, S.;Karthik, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.902-910
    • /
    • 2018
  • In recent times, development of nanofluid insulation for power transformers is a hot research topic. Many researchers reported the enhancement in dielectric characteristics of nano modified mineral oils. Considering the drawbacks of petroleum based mineral oil, it is necessary to understand the dielectric characteristics of nanofluids developed with natural ester based oils. Palm oil has better insulation characteristics comparable to mineral oil. However very few research reports is available in the area of nanofluids based on palm oil. Partial discharge (PD) is one of the major sources of insulation performance degradation of transformer oil. It is essential to understand the partial discharge(PD) characteristics by collecting huge data base of PD performance of nano modified palm oil which will increase its confidence level for power transformer application. Knowing these facts, in the present work, certain laboratory experiments have been performed on PD characteristics of nano $SiO_2$ modified palm oil at different electrode configurations. Influence of concentration of nano filler material on the PD characteristics is also studied. Partial discharge inception voltage, Phase resolved partial discharge (PRPD) pattern, PD signal time-frequency domain characteristics, PD signal equivalent timelength-bandwidth mapping, Weibull distribution statistical parameters of PRPD pattern, skewness, repetition rate and phase angle variations are evaluated at different test conditions. From the results of the experiments conducted, we came to understand that PD performance of palm oil is considerably enhanced with the addition of $nano-SiO_2$ filler at 0.01%wt and 0.05%wt concentration. Significant reduction in PD inception voltage, repetition rate, Weibull shape parameter and PD magnitude are noticed with addition of $SiO_2$ nanofillers in palm oil. These results will be useful for recommending nano modified palm oil for power transformer applications.

Anti-norovirus activity of natural compounds and its potential in food application (항노로바이러스 천연물을 이용한 식품개발)

  • Kim, Yeon-Ji;Lee, Jeong Su;Joo, In Sun;Lee, Sung-Joon
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • Control of food pathogens is critical in food safety field. Norovirus is one of the major causes of gastroenteritis and food poisoning worldwide, however, currently, there is not a vaccine or a specific drug available for its treatment. There are several methods to inactivate norovirus during food processing by chemical and physical treatments, however, the use of natural substance has been suggested as an optional strategy due to their safety and consumer preference. In this study supported by Ministry of Food and Drug Safety in Korea, we identified novel plant-derived substances with significant anti-norovirus activities. The aim of this project was to determine the antiviral activity of a wide range of natural substances, including plant-derived extracts and essential oils, using a norovirus surrogate system, human norovirus replicon-bearing cells, and mouse in vivo experiments. During the activity screening test, we identified novel anti-norovirus substances or oils using plaque assay with MNV-1. Six selected substances were formulated into an optimum mixture and used as an ingredient for salad sauce of which anti-novovirus activity was confirmed(pending for patent and paper submission). The potential application of selected natural substances as a metal surface sanitizer was also tested. Interestingly, the mixture of selected natural compounds showed a significant inhibitory effect against norovirus. These results suggest that these substances may be used as food ingredient with anti-norovirus antivity or components for surface sanitizers to prevent norovirus contamination.