• Title/Summary/Keyword: Essential element

Search Result 1,334, Processing Time 0.029 seconds

A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification (Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안)

  • Lee, Ko-Eun;Yu, Young-Su;Ha, Dae-Mok;Koo, Bon-Sang;Lee, Kwan-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

Validation of Crack-Tip Modeling and Calculation Procedure for Stress Intensity Factor for Iterative Finite Element Crack Growth Analysis (반복 유한요소 결함 성장 해석을 위한 결함 모델링 및 응력확대계수 계산 절차의 타당성 검증)

  • Gi-Bum Lee;Youn-Young Jang;Nam-Su Huh;Sunghoon Park;Noh-Hwan Park;Jun Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.36-48
    • /
    • 2021
  • As the material aging of nuclear power plants has been progressing in domestic and overseas, crack growth becomes one of the most important issues. In this respect, the crack growth assessment has been considered an essential part of structural integrity. The crack growth assessment for nuclear power plants has been generally performed based on ASME B&PV Code, Sec. XI but the idealization of crack shape and the conservative solutions of stress intensity factor (SIF) are used. Although finite element analysis (FEA) based on iterative crack growth analysis is considered as an alternative method to simulate crack growth, there are yet no guidelines to model the crack-tip spider-web mesh for such analysis. In this study, effects of various meshing factors on FE SIF calculation are systematically examined. Based on FEA results, proper criteria for spider-web mesh in crack-tip are suggested. The validation of SIF calculation method through mapping initial stress field is investigated to consider initial residual stress on crack growth. The iterative crack-tip modeling program to simulate crack growth is developed using the proposed criteria for spider-web mesh design. The SIF results from the developed program are validated by comparing with those from technical reports of other institutes.

Crack detection in folded plates with back-propagated artificial neural network

  • Oguzhan Das;Can Gonenli;Duygu Bagci Das
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.319-334
    • /
    • 2023
  • Localizing damages is an essential task to monitor the health of the structures since they may not be able to operate anymore. Among the damage detection techniques, non-destructive methods are considerably more preferred than destructive methods since damage can be located without affecting the structural integrity. However, these methods have several drawbacks in terms of detecting abilities, time consumption, cost, and hardware or software requirements. Employing artificial intelligence techniques could overcome such issues and could provide a powerful damage detection model if the technique is utilized correctly. In this study, the crack localization in flat and folded plate structures has been conducted by employing a Backpropagated Artificial Neural Network (BPANN). For this purpose, cracks with 18 different dimensions in thin, flat, and folded structures having 150, 300, 450, and 600 folding angle have been modeled and subjected to free vibration analysis by employing the Classical Plate Theory with Finite Element Method. A Four-nodded quadrilateral element having six degrees of freedom has been considered to represent those structures mathematically. The first ten natural frequencies have been obtained regarding healthy and cracked structures. To localize the crack, the ratios of the frequencies of the cracked flat and folded structures to those of healthy ones have been taken into account. Those ratios have been given to BPANN as the input variables, while the crack locations have been considered as the output variables. A total of 500 crack locations have been regarded within the dataset obtained from the results of the free vibration analysis. To build the best intelligent model, a feature search has been conducted for BAPNN regarding activation function, the number of hidden layers, and the number of hidden neurons. Regarding the analysis results, it is concluded that the BPANN is able to localize the cracks with an average accuracy of 95.12%.

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis (유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.718-725
    • /
    • 2017
  • A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

우주급 경통 열-흡습 설계

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.108-113
    • /
    • 2005
  • Strucutral and hygrothermal analysis for a composite tube is carried out in this study, that provides critical parameters for the design of a highly dimensionally stable space telescope. Carpet plots for laminate effective engineering constants are generated and used for the best tube lay-ups with high elastic modulus and highly insensitive to thermal and moisture expansion, which is essential for maintaining optical alignment of opto-mechanical system under random force applied during a launch campaign and orbital thermal load. Despace in the longitudinal direction under hygrothermal load of the tubes constructed with the selected lay-ups is calculated for the validation of lay-up designs on the dimensionalstability. Dynamic analysis is also carried out to feature the resonant behaviour. A zig-zag triangular element accurately representing through thickness stress variations for laminated structures is developed in this study and incorporated into the structural and hygrothermal analysis.

  • PDF

Characteristics Analysis of Reluctance Type Transverse Flux Linear Motor (릴럭턴스형 횡자속 선형전동기의 특성해석)

  • Ryu, Ho-Gil;Lee, Ji-Young;Ha, Kyung-Ho;Hong, Jung-Pyo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.729-731
    • /
    • 2002
  • This paper deals with 2D and 3D analyses by finite element method for the characteristics of reluctance type transverse flux linear motor. Although 3D analysis is essential because of the characteristics by flux direction. 2D analyses are also used by considering the effective axial length and using the equivalent reluctance 2D model. The thrust, the normal force and the coenergy of the machine are calculated and compared by the results of the three analysis methods.

  • PDF