• 제목/요약/키워드: Essential Genes

검색결과 536건 처리시간 0.022초

Induced Mutant Animal Models for Studying the Genetics of Hypertension and Atherosclerosis

  • Oh, Goo-Taeg
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.289-292
    • /
    • 2001
  • Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. Models of essential hypertension have been produced by mutated genes relating renin angiotensin system. The most significant contribution to understanding the genetic etiology of essential hypertension is probably the demonstration that discrete alterations in the expression of a variety of different genes can individually cause changes in the blood pressures of mice, even when the mice have all their compensatory mechanisms intact. These effects are readily detected in animals having moderate decreases in gene function due to heterozygosity for gene disruptions or modest increases due to gene duplication. As a species the mouse is highly resistant to atherosclerosis. However. through induced mutations it has been possible to develop lines oj mice that are deficient in apolipoprotein E, a ligand important in lipoprotein clearance, develop atherosclerotic lesions resembling those observed in humans. The atherosclerotic lesions in apoE-deficient mice have been well characterized, and they resemble human lesions in their sites of predilection and progression to the fibroproliferative stage. Other promising models are mice that are deficient in the low-density lipoprotein receptor. Considerable work still remains to be done in dissecting out in a rigorous manner the effects of alterations in single genes on the induction or progression of atherosclerosis and on the control of blood pressures. Perhaps even more exciting is the opportunity now becoming available to breed animals in which the effects oj precise differences in more than one gene can be studied in combination.

  • PDF

Functional Characterization of Genes Located at the Aurofusarin Biosynthesis Gene Cluster in Gibberella zeae

  • Kim, Jung-Eun;Kim, Jin-Cheol;Jin, Jian-Ming;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • 제24권1호
    • /
    • pp.8-16
    • /
    • 2008
  • Aurofusarin is a polyketide pigment produced by some Fusarium species. The PKS12 and GIP1 genes, which encode a putative type I polyketide synthase (PKS) and a fungal laccase, respectively, are known to be required for aurofusarin biosynthesis in Gibberella zeae (anamorph: Fusarium graminearum). The ten additional genes, which are located within a 30 kb region of PKS12 and GIP1 and regulated by a putative transcription factor (GIP2), organize the aurofusarin biosynthetic cluster. To determine if they are essential for aurofusarin production in G. zeae, we have employed targeted gene deletion, complementation, and chemical analyses. GIP7, which encodes O-methyltransferase, is confirmed to be required for the conversion of norrubrofusarin to rubrofusarin, an intermediate of aurofusarin. GIP1-, GIP3-, and GIP8-deleted strains accumulated rubrofusarin, indicating those gene products are essential enzymes for the conversion of rubrofusarin to aurofusarin. Based on the phenotypic changes in the gene deletion strains examined, we propose a possible pathway for aurofusarin biosynthesis in G. zeae. Our results would provide important information for better understanding of naphthoquinone biosynthesis in other fdarnentous fungi as well as the aurofusarin biosynthesis in G. zeae.

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Isolation and Detection of Genes Responsible for Pyoverdines Biosynthesis in Pseudomonas putida KNUK9

  • Hussein, Khalid A.;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.119-124
    • /
    • 2015
  • Pyoverdines (PVDs) are organic compounds produced by the fluorescent Pseudomonads under iron starvation conditions. Among the isolated rhizosphere pseudomonads strains, P. putida KNUK9 showed the highest production of PVDs and its production reached to 62.81% siderophores units. DNA isolation, ligation, PCR amplification, and transformation using E. coli $DH5{\alpha}$ cells were carried out for preparing the strong pyoverdine producer strains. We detected seven genes playing the fundamental roles in the pyoverdine metabolism in Pseudomonads. According to data and analysis obtained from the study, we deduced that the strain P. putida KNUK9 contains the essential genes required for pyoverdine biosynthesis.

Algal genomics perspective: the pangenome concept beyond traditional molecular phylogeny and taxonomy

  • Lee, JunMo
    • Journal of Species Research
    • /
    • 제10권2호
    • /
    • pp.142-153
    • /
    • 2021
  • Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.

Sequencing and annotation of the complete mitochondrial genome of a threatened labeonine fish, Cirrhinus reba

  • Islam, Mohammad Nazrul;Sultana, Shirin;Alam, Md. Jobaidul
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.32.1-32.7
    • /
    • 2020
  • The mitochondrial genome of a species is an essential resource for its effective conservation and phylogenetic studies. In this article, we present sequencing and characterization of the complete mitochondrial genome of a threatened labeonine fish, Cirrhinus reba collected from Khulna region of Bangladesh. The complete mitochondrial genome was 16,597 bp in size, which formed a circular double-stranded DNA molecule containing a total of 37 mitochondrial genes (13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes) with two non-coding regions, an origin of light strand replication (OL) and a displacement loop (D-loop), similar structure with other fishes of Teleostei. The phylogenetic tree demonstrated its close relationship with labeonine fishes. The complete mitogenome of Cirrhinus reba (GenBank no. MN862482) showed 99.96% identity to another haplotype of Cirrhinus reba (AP013325), followed by 90.18% identity with Labeo bata (AP011198).

Imprinted Gene mRNA Expression during Porcine Peri-implantation Development

  • Cha, Byung-Hyun;Kim, Bong-Ki;Hwang, Seongsoo;Yang, Byoung-Chul;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Kim, Myung-Jick;Seong, Hwan-Hoo;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.693-699
    • /
    • 2010
  • Imprinted genes are essential for fetal development, growth regulation, and postnatal behavior. However, little is known about imprinted genes in livestock. We hypothesized that certain putatively imprinted genes affected normal peri-implantation development such as embryo elongation, initial placental development, and preparation of implantation. The objective of the present study was to investigate the mRNA expression patterns of several putatively imprinted genes during the porcine peri-implantation stages from day 6 to day 21 of gestation. Imprinted genes were selected both maternally (Dlk1, IGF2, Ndn, and Sgce) and paternally (IGF2r, H19, Gnas and Xist). Here, we report that the maternally imprinted gene IGF2 was expressed from day 6 (Blastocyst stage), but Dlk1, Ndn, and Sgce were not expressed in this stage. These genes were first expressed between days 12 and day 14. All the maternally imprinted genes studied showed significantly high expression patterns from day 18 of embryo development. In contrast, paternally imprinted genes IGF2r, H19, Gnas, and Xist were first expressed from day 6 of embryo development (BL). Our data demonstrated that the expression of H19 and Gnas genes was significantly increased from day 14 of the embryo developmental stage, while IGF2r and Xist only showed high expression after day 21. This study is the first to show that the putatively imprinted genes were stage-specific during porcine embryonic development. These results demonstrate that the genes studied may exert important effects on embryo implantation and fetal development.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.

Novel Vancomycin Resistance System in Streptomyces coelicolor

  • Hong, Hee-Jeon
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.143-147
    • /
    • 2005
  • The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high-level resistance to vancomycin. The van genes are organised into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. vanHAX are orthologuous to genes found in vancomycin resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac, rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterised vancomycin-resistance clusters from pathogens. VanK is essential for vancomycin resistance in S. coelicolor and it is required for adding Gly branch to stem peptides terminating D-Ala-D-Lac. Because VanK can recognise D-Lac-containing precursors but the constitutively expressed femX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, vancomycin-induced expression of VanHAX in a vanK mutant is lethal. Further, femX null mutants are viable in the presence of glycopeptide antibiotics but die in their absence. Bioassay using vanJp-neo fusion reporter system also showed that all identified inducers for van genes expression were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer.

  • PDF