When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.
The phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) is responsible for the simultaneous transfer and phosphorylation of various carbon sources in Escherichia coli. The ptsG gene encoding the enzyme $IICB^{Glc}$, the membrane component of the glucose-specific PTS, is repressed by Mlc and activated by the CRP cAMP complex; various other factors, such as Fis, FruR, and ArcA, are also known to be involved in ptsG regulation. Thus, in an attempt to discover a novel gene affecting the regulation of ptsG, a mutant with a decreased ptsG transcription in the presence of glucose compared with the wild-type strain was screened using transposon random mutagenesis. The mutant was found to have a transposon insertion in yhjV, a putative gene encoding a transporter protein whose function is yet unknown.
Escherichia coli의 중요한 sugar 흡수 system인 Phosphoenolpyruvate. carbohydrate phosphotransferase system(PTS)의 주요 구성 enzyme을 만드는 pts operon에는 여러 개의 promoter가 존재하여 어느 환경에서도 적절한 정도의 PTS 활성을 유지하도록 한다. E. coli pts operon의 P1 promoter transcription이 in vitro와 in vivo에서 차이가 나는 원인을 밝히기 위하여 pts promoter activity에 영향을 줄 수도 있는 pts P0 Promoter의 1kbp upstream에서부터 P0와 P1 promoter까지 transcription vector에 cloning하여 in vitro transcription assay를 한 결과, pts promoter의 upstream DNA가 pts P1 promoter의 in vitro transcription에 미치는 영향이 없음을 알 수 있었다. 여러 가지 PTS sugar들을 이용하여 in vivo에서 이들 sugar 들이 pts transcription에 미치는 영향을 cAMP농도 변화와 비교 조사한 바, glucose존재 하에 자랄 때보다 CAMP농도가 높은 mannose나 mannitol 존재 하에 bacteria가 자랄 때 P1b transcription은 증가하나 P0 transcription은 glucose존재 하에 자랄 때 더 높은 결과를 보였다. 이 결과는 P0에 glucose에 의해 induction되는 repressor가 존재하고, P1 에는 glucose. mannose, mannitol에 의해 공통적으로 induction되는 제 2의 repressor가 존재할 것이라는 가능성을 보여주는 것이다.
대부분의 Proteobacteria에 존재하는 질소 인산전달계는 다양한 세포내 조절에 관여하는 cascade이다. 이들은 ptsP 유전자에 의해 암호화되는 $EI^{Ntr}$, ptsO에 의해 암호화되는 NPr, ptsN에 의해 암호화되는 $EIIA^{Ntr}$로 이루어져 있다. 이들 중 $EIIA^{Ntr}$은 $K^+$ 농도 조절, ppGpp 농도 조절, 질소와 탄소 대사, ABC transporter의 조절 등 다양한 세포내 조절과정에 관여하지만, NPr의 생리적 기능에 대해서는 알려진 바가 많지 않다. 최근의 한 논문은 대장균에서 탈인산화된 NPr이 세포막 스트레스 반응에 관여한다는 사실이 밝혔다. 본 연구에서는 NPr과 관련된 새로운 표현형을 제공한다. ptsP 유전자가 결손된 균주는 filamentation 표현형을 나타내었다. ptsP 결손균주의 이런 표현형은 ptsO 유전자의 추가적인 결실에 의해 사라졌지만, ptsN 유전자의 추가적 소실에 의해서는 유지되었다. 이는 ptsP 결손균주의 filamentation 표현형이 탈인산화된 NPr의 증가 때문에 나타났음을 나타낸다. 이런 생각은 야생종에서 탈인산화된 NPr이 증가되었을 때 filamentation 표현형을 나타낸다는 사실을 통해 확증되었다. 또한 탈인산화된 NPr의 양이 증가함에 따라 대장균의 세포 길이가 점진적으로 증가한다는 사실을 알 수 있었다. 이러한 결과는 탈인산화된 NPr이 대장균의 형태적 변화를 유도함을 시사한다.
A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.
The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.
A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.
Although widely used as a host for recombinant protein production, Escherichia coli is unsuitable for massive screening of recombinant clones, owing to its poor secretion of proteins. A vector system containing T4 holin and T7 lysozyme genes under the control of the ptsG promoter derivative that is inducible in the absence of glucose was developed for programmed cell lysis of E. coli. Because E. coli harboring the vector grows well in the presence of glucose, but is lysed upon glucose exhaustion, the activity of the foreign gene expressed in E. coli can be monitored easily without an additional step for cell disruption after the foreign gene is expressed sufficiently with an appropriate concentration of glucose. The effectiveness of the vector was demonstrated by efficient screening of the amylase gene from a Bacillus subtilis genomic library. This vector system is expected to provide a more efficient and economic screening of bioactive products from DNA libraries in large quantities.
Brevibacterium ammoniagenes 염색체상에서 phosphotrans-ferase system의 glucose permease를 코드하는 ptsG 유전자와 인접한 지역의 염기서열을 결정한 결돠 1,467 nucleo-tides로 구성된 1개의 open reading frame(ORF)이 발견되었고 이것은 489 아미노산 잔기로 구성되는 단백질을 코드하는 것으로추정된다. 이러한 ORF로부터 추정된 단백질의 아미노산 잔기배열을 분석한 결과 30S 리보좀을 구성하는 단백질중의 하나인 S1과 상동성이 높은 것으로 나타났는데 특히 Mycobacterium tuberculosis M. leprae와 Srepto-myces coelicola의 S1단백질의 아미노산 잔기배열과 각각 83%, 74%m, 77%의 매우 높은 상동성을 보였으며 Escherichia coli의 것과도 약 40%의 상동성을 보였다 이로보아 B.ammoniagenes 염색체상에서 ptsG 유전자와 인접한 지역에 존재하는 ORF는 리보좀 단백질 S1의 유전자로 추정된다. 또한 이들은 염색체상에서 동일한 방향으로 판독되며 S1의 유전자가 ptsG의 위 지역으로 266 nucleotides 떨어져 존재하고 있다.
A Brevibacterium flavum gene coding for glucose permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing the Escherichia coli ZSCl13 mutations affecting a ptsG gene with the B. flavum genomic library. From the E. coli clone grown as red colony on a MacConkey plate supplemented with glucose as an additional carbon source, a recombinant plasmid was isolated and named pBFT93. The plasmid pBFT93 was identified as carrying a 3.6-kb fragment of B. flavum chromosomal DNA which enables the E. coli transformant to use glucose or man nose as a sole carbon source in an M9 minimal medium. The non-metabolizable sugar analogues, 2-deoxy-D-glucose (2-DG) and methyl-$\alpha$-D-glucopyranoside (MeGlc) affected the growth of ZSCl13 cells carrying the plasmid pBFT93 on minimal medium supplemented with non-PTS carbohydrate, glycerol, as a sole cabon source, while the analogues did not repress the growth of ZSCl13 cells without pBFT93. It was also found that both $2-deoxy-D-[U-^{14}C]glucose{\;}and{\;}methyl-{\alpha}-D-[U-^{14}C]glucopyranoside$ could be effectively transported into ZSCl13 cells transformed with plasmid pBFT93. Several in vivo complementation studies suggested that the B. flavum DNA in pBFT93 encodes a glucose permease specific for glucose and mannose.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.