Development of a Novel Vector System for Programmed Cell Lysis in Escherichia coli

  • Yun, Ji-Ae (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Park, Ji-Hye (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Park, Nan-Joo (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kang, Seo-Won (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2007.07.31

Abstract

Although widely used as a host for recombinant protein production, Escherichia coli is unsuitable for massive screening of recombinant clones, owing to its poor secretion of proteins. A vector system containing T4 holin and T7 lysozyme genes under the control of the ptsG promoter derivative that is inducible in the absence of glucose was developed for programmed cell lysis of E. coli. Because E. coli harboring the vector grows well in the presence of glucose, but is lysed upon glucose exhaustion, the activity of the foreign gene expressed in E. coli can be monitored easily without an additional step for cell disruption after the foreign gene is expressed sufficiently with an appropriate concentration of glucose. The effectiveness of the vector was demonstrated by efficient screening of the amylase gene from a Bacillus subtilis genomic library. This vector system is expected to provide a more efficient and economic screening of bioactive products from DNA libraries in large quantities.

Keywords

References

  1. Blight, M. A. and I. B. Holland. 1994. Heterologous protein secretion and the versatile Escherichia coli haemolysin transloctor. Trends Biotech. 12: 450-455 https://doi.org/10.1016/0167-7799(94)90020-5
  2. Cho, S., D. Shin, G. E. Ji, S. Heu, and S. Ryu. 2005. Highlevel recombinant protein production by overexpression of Mlc in Escherichia coli. J. Biotechnol. 119: 197-203 https://doi.org/10.1016/j.jbiotec.2005.03.008
  3. Eom, G. T., J. S. Rhee, and J. K. Song. 2006. An efficient secretion of type I secretion pathway-dependent lipase, TliA, in Escherichia coli: Effect of relative expression levels and timing of passenger protein and ABC transporter. J. Microbiol. Biotechnol. 16: 1422-1428
  4. Grundling, A., M. D. Manson, and R. Young. 2001. Holins kill without warning. Proc. Natl. Acad. Sci. USA 98: 9348-9352
  5. Hori, K., M. Kaneko, Y. Tanji, S.-H. Xing, and H. Unno. 2002. Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl. Microbiol. Biatechnol. 59: 211-216 https://doi.org/10.1007/s00253-002-0986-8
  6. Jeong, D.-W., J.-H. Lee, K. H. Kim, and H. J. Lee. 2006. evelopment of a food-grade integration vector for heterologous gene expression and protein secretion in Lactococcus lactis. J. Microbiol. Biatechnol. 16: 1799-1808
  7. Kim, S.-Y, T.-W. Nam, D. Shin, B.-M. Koo, Y-J. Seok, and S. Ryu. 1999. Purification ofMIc and analysis of its effects on the pts expression in Escherichia coli. J. Biol. Chem. 274: 25398-25402 https://doi.org/10.1074/jbc.274.36.25398
  8. Kimata, K., T. Inada, H. Tagami, and H. Aiba. 1998. A global repressor(Mlc) is involved in glucose induction ofthe ptsG gene encoding major glucose transporter in Escherichia coli. Malec. Microbial. 29: 1509-1519 https://doi.org/10.1046/j.1365-2958.1998.01035.x
  9. Kimata, K., H. Takahashi, T. Inada, P. Postma, and H. Aiba. 1997. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in E. coli. Proc. Natl. Acad. Sci. USA 94: 12914-12919
  10. Kitai, K., T. Kudo, S. Nakamura, T. Masegi, Y. Ichikawa, and K. Horikoshi. 1988. Extracellular production of human immunogloblin G Fc region (hlgF-Fc) by Escherichia coli. Appl. Microbiol. Biotechnol. 28: 52-56
  11. Kunst, F., N. Ogasawara, I. Moszer, et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256 https://doi.org/10.1038/36786
  12. Miksch, G, E. Fiedler, P. Dobrowolski, and K. Friehs. 1997. The kil gene of the ColE 1 plasmid of Escherichia coli controlled by a growth-phase-dependent promoter mediates the secretion of a heterologous periplasmic protein during the stationary phase. Arch. Microbiol. 167: 143-150 https://doi.org/10.1007/s002030050427
  13. Miller, G L. 1959. Use of dinitrosalycylic acid for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  14. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  15. Morita, M., K. Asami, Y. Tanji, and H. Unno. 2001. Programmed Escherichia coli cell lysis by expression of cloned T4 phage lysis genes. Biotechnol. Prog. 17: 573-576 https://doi.org/10.1021/bp010018t
  16. Nam, T. W., S. H. Cho, D. Shin, J. Y. Jeong, J. H. Lee, J. H. Roe, A. Peterkofsky, S. O. Kang, S. Ryu, and Y. J. Seok. 2001. The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. EMBO J. 20: 491-498 https://doi.org/10.1093/emboj/20.3.491
  17. Plumbridge, J. 1998. Expression of ptsG, the gene for the major glucose PTS transporter in Escherichia coli, is repressed by Mlc and induced by growth on glucose. Mol. Microbiol. 29: 1053-1063 https://doi.org/10.1046/j.1365-2958.1998.00991.x
  18. Resch, S., K. Gruber, G. Wanner, S. Slater, D. Dennis, and W. Lubitz. 1998. Aqueous release and purification of poly(${\alpha}$-hydrobutylate) from Escherichia coli. J. Biotechnol. 65: 173-182 https://doi.org/10.1016/S0168-1656(98)00127-8
  19. Sambrook, J. and D. W. Russel. 2000. Molecular Cloning, A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  20. Shin, D., N. Cho, S. Heu, and S. Ryu. 2003. Selective regulation of ptsG expression by Fis. Formation of either activating or repressing nucleoprotein complex in response to glucose. J. Biol. Chem. 278: 14776-14781 https://doi.org/10.1074/jbc.M213248200
  21. Shin, D., S. Lee, Y. Shin, and S. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J. Microbiol. Biotechnol. 16: 795-798
  22. Shokri, A., A. M. Sanden, and G. Larsson. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl. Microbiol. Biotechnol. 60: 654-664 https://doi.org/10.1007/s00253-002-1156-8
  23. Wosten, M. M. S. M., M. Boeve, M. G. A. Koot, A. C. van Nuenen, and B. A. M. van der Zeijst. 1998. Identification of Carnpylobacter jejuni promoter sequences. J. Bacteriol. 180: 594-599
  24. Young, R. Y. 1992. Bacteriophage lysis: Mechanism and regulation. Microbiol. Rev. 56: 430-481