• Title/Summary/Keyword: Escherichia coli O157:H7

Search Result 373, Processing Time 0.034 seconds

Lactic Acid Fermentation and Biological Activities of Rubus coreanus (복분자의 유산발효와 생리활성 평가)

  • Chang, Hak-Gil;Park, Young-Seo
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.367-375
    • /
    • 2003
  • The puree of Rubus coreanus was fermented using lactic acid bacteria and its biological activities were examined. Lactobacillus acidophilus KCCM 32820, L. casei KCCM 12452, Lactococcus lactis subsp. lactis KCCM 40104, and Streptococcus thermophilus KCCM 40430 were used as a single or mixed starter for the lactic acid fermentation, and their cultures at the late logarithmic growth phase were inoculated to final concentration of 2% (v/v). L. casei fermented the puree of Rubus coreanus best when used as a single starter, and the culture of L. casei and L. lactis with the inoculation ratio of one to one showed the highest fermentation activity when used as a mixed starter. However, the fermented broth of the puree of Rubus coreanus using L. acidophilus and S. thermophilus showed the best results in the sensory evaluation. The optimal lactic acid fermentation conditions were as follows; the concentration of oligosaccharide added was 1% (w/v), pH of puree and fermentation temperature were 4.0 and $37^{\circ}C$, respectively, and fermentation time was $72{\sim}96$ hours. Glucose and fructose were major free sugars, and the content of lactic acid was 698.2 mg/100 g in the fermented broth. The fermented broth of the puree of Rubus coreanus showed the electron donating ability and nitrite scavenging ability with the value of 69% and 38.3% at pH 1.2, respectively. SOD-like activity and inhibitory activity on xanthine oxidase were also found in the fermented broth with the value of 60.3% and 41.8%, respectively. When the antimicrobial activities of the fermented broth were examined, it showed the highest growth inhibitory activity against Escherichia coli O-157:H7, and also contained antimicrobial activities against Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus.

Isolation of Major foodborne Pathogenic Bacteria from Ready-to-Eat Seafoods and Its Reduction Strategy (해산물식품 중 식중독원인균의 오염패턴 및 저감화 방안)

  • KIM Soon Han;Sin Yeong-Min;Lee Myeong Ja;Shin Pil Ki;Kim Mi Cyeong;Cho Jung Sook;Lee Chang Hee;Lee Young Ja;Chae Kab Ryoung
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.941-947
    • /
    • 2005
  • The contamination frequency of major foodborne pathogenic bacteria was investigated from 213 seafood samples including sliced raw fish and shellfish in Busan and CyeongNam province area. Tested microorganisms were Salmonella spp. Staphyloroccus aureus, Vibrio parahaemolyticus, Escherichia coli O157:H7, Bncillus cereus, Listeria monocytogenes and Campylobacter jejuni. The frequency of isolated microorganisms was V. parahaemolyticus (30.5%), B. cereus (9.9%), S. aureus (3.8%) and other pathogenic bacteria (1.4%). from July to October, total isolation rates were greater than 50% and V. parahaemolyticus was dominant among the microorganisms isolated. The bacteria isolation rate (49.2%) in raw seafoods including shellfishes was higher than one (28.9%) in sliced raw fish. V. parahaemelyticus isolates were resistant to ampicillin (96.9%), amikacin (29.2%) and tetracycline (27.7%), and B. cereus isolates were resistant to ampicillin (100%), Penicillin G (100%), rifampicin (71.4%) and tetracycline (14.3%). The growth of V. parahaemolyticus and B. rereus was greatly inhibited below $10^{\circ}C$, but increased at ambient temperature. Washing seafood with tap water showed to reduce total count of remaining V. parahaemolyticus. Thus temperature control under $10^{\circ}C$, sufficient washing and prompt eating appeared to reduce the risk of food poisoning by these bacteria in seafoods.

Rapid detection of shiga-toxin producing E. coli by bacteriophage amplification assay (박테리오파지 증폭 기법을 활용한 시가 독소 생성 병원성 대장균의 신속 검출)

  • Baek, Da-Yun;Park, Jong-Hyun;Cho, Seok-Cheol;Lee, Young-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacteria and can cause severe foodborne disease. For STEC detection, conventional culture methods have disadvantages in the fact that conventional culture takes a long time to detect and PCR can also detect dead bacteria. To overcome these problems, we suggest a bacteriophage amplification assay, which utilizes the ability of bacteriophages to infect living cells and their high specificity. We used a combination of six bacteriophages infecting E. coli to make the bacteriophage cocktail and added ferrous ammonium sulfate as a virucidal agent to remove free-bacteriophages. When cherry tomato and paprika were artificially inoculated with the cocktail at a final concentration of around 3 log CFU/mL and were enriched for at least 5 h in mTSB broth with Novobiocin, approximately 2-3 log PFU/mL were detected through the bacteriophage amplification assay. Therefore, bacteriophage amplification assay might be convenient and a useful method to detect STEC in a short period of time.

Survey on the microbiological quality of meat in Seoul (소.돼지 도체표면의 미생물학적 고찰)

  • 변정옥;모의원;문호판;이양수;이병동
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.2
    • /
    • pp.105-112
    • /
    • 2000
  • This survey was conducted to evaluate the microbiological quality of raw beef and pork products from January to December in 1999. A total of 107 beef and 157 hog carcasses were collected from two abattoirs located in Seoul. The result showed that beef carcasses had an average bacterial loading around 139,000 bacteria/$\textrm{cm}^2$ of carcass surface, indicating a little bit higher count than the results reported in USA and Australian meat. However, overall hygienic status was found to be acceptable for all examined carcasses because 84.4% of product rated excellent, good or acceptable comparable to USA of 91.6% and Australia of 88%. The analysis of data on overnight-chilled to weekend-chilled carcasses indicated that the microbiological growth occurred in the chiller during the weekend chill with increases in total viable count from 130,000cfu/$\textrm{cm}^2$ to 400,000cfu/$\textrm{cm}^2$. Qualitative testing for escherichia coli, EC + MUG was used as a most probable number (MPN) method along with the petrifilm method. The average of MPN/$\textrm{cm}^2$ of E coli biotype 1 was 29MPN/$\textrm{cm}^2$ for beef carcasses and 1,100 MPN/$\textrm{cm}^2$ for hog carcasses, respectively. However, 41% of beef and 16.3% of hog carcasses were shown to be less than < 3 MPN/$\textrm{cm}^2$ in E coli biotype 1 examination. Although salmonella enteritis, S typhimurium and E coli O157:H7 were all negative, listeria monocytogenes was recovered from only one hog surface samples of the 89 carcasses tested.

  • PDF

Antibacterial and Proteolytic Activities of Bacterial Isolates from Ethnic Fermented Seafoods in the East Coast of Korea (동해안 특산 수산발효식품에서 분리된 균주의 항균 및 단백질 가수분해 활성)

  • Park, Woo Jung;Lee, Seung Hwan;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.88-92
    • /
    • 2017
  • We attempted to investigate antibacterial and proteolytic activities of bacteria isolated from three ethnic fermented seafoods in the east coast of South Korea, gajami sikhae, squid jeotgal, and fermented jinuari (Grateloupia filicina). Bacillus cereus ATCC 14579, Listeria monocytogenes ATCC 15313, Staphylococcus aureus KCTC 1916, Escherichia coli O157:H7 ATCC 43895, and Salmonella enterica serovar Typhimurium ATCC 4931 were selected to determine the antibacterial activity of the bacterial isolates. Among 233 isolates from the three foods, 36 isolates (15.5%) showed antibacterial activity against B. cereus ATCC 14579, the highest incidence of inhibition, followed by S. aureus KCTC 1916 (7.7%) and L. monocytogenes ATCC 15313 (6.0%). However, only five and three strains among the isolates exhibited inhibitory activity against Gram-negative indicators, E. coli ATCC 43895 and Sal. enterica ATCC 4931, respectively. The proteolytic activity of the isolates was determined via hydrolysis of skim milk after 24, 48, and 72 h incubation. After 72 h incubation, 72 out of 233 isolates (30.9%) showed proteolytic activity, and the isolates of fermented jinuari exhibited the highest incidence of proteolytic activity (60%, 36 isolates). These results suggest that ethnic fermented seafoods in the east coast of South Korea might be a promising source of bacterial strains producing antibacterial and proteolytic compounds.

Antibacterial Activity of Euphorbia humifusa Extracts on Food-Borne Pathogenic Bacteria (비단풀 추출물의 식중독세균에 대한 항균활성)

  • Choi, Moo-Young
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • This study was performed to investigate the antimicrobial effects of Euphorbia humifusa ethanol-extract against food-borne pathogens. The growth inhibitory effects of the extract at a concentration of 250, 500, 1,000 or 2,000 mg/L on food poisoning microorganism were determined against Salmonella typhimurium, Listeria monocytogenes, Yersinia enterocolitica, Escherichia coli O157:H7 and Staphylococcus aureus. The microorganisms growth was not affected by the extract at the concentration up to 250 mg/L, but was significantly (p<0.05) inhibited by the extract at a concentration higher than 1,000 mg/L. The extract of Euphorbia humifusa had strong antimicrobial activity against all test strains at a concentration of 2,000 mg/L. The results in the present study demonstrate antimicrobial effects of Euphorbia humifusa ethanol-extract against food-borne pathogens, suggesting that Euphorbia humifusa could be an effective natural antibacterial agent in food.

In Vitro Selection of RNA Aptamer Specific to Salmonella Typhimurium

  • Han, Seung Ryul;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.878-884
    • /
    • 2013
  • Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity ($K_d$ ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

Studies of Tarak, a Korean Traditional Fermented Milk Product (한국 전통 발효유 타락에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Tarak is a traditional Korean fermented milk product, which is prepared by the addition of rice wine to milk. The major microbial strains found in Tarak are Leuconostoc citreum, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae, and Pichia kudriavzevii. The activity of lactic acid bacteria isolated from traditional Korean foods of Taraki against the carcinogenic bacteria Helicobacter pylori, Escherichia coli O157:H7, and Cronobacter sakazakii was characterized. Tarak extract significantly increased the proliferation of T-lymphocyte Jurkat (clone E6-1) cells. Tarak also inhibited the tyrosinase activity and melanin biosynthesis induced by an ${\alpha}$-melanocyte-stimulating hormone in pituitary intermediate lobe.

Tracing surrogate bacteria inoculated on hide through the beef slaughtering process

  • Kim, Seongjoon;Kim, Sukwon;Kim, Sung Kwan;Choi, Kwanghoon;Kim, Jinman;Choe, Nonghoon
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.1
    • /
    • pp.5.1-5.5
    • /
    • 2022
  • Many countries have imposed regulations relating to concerns that hide contamination will affect the cleanliness of abattoirs. However, South Korea has not indicated any clear criteria. The purpose of this study is to use surrogate bacteria to measure the contamination in abattoirs caused by contaminated cattle hides. The swab contact method and plate count method are used. Surrogate bacteria are found in most internal environments after the final process. These surrogates remained on the carcass even after the final washing process. This paper is the first study in South Korea that use surrogate bacteria to analyze contamination levels in abattoirs.

Relationship between Gb3 Expression and Cytotoxicity of Shiga-like Toxin I (Shiga-like Toxin I의 세포독성과 수용체 Gb3 발현과의 관계)

  • Lim, Suk-Hwan;Kim, Gi-Young;Kim, Hyung-Chun;Kim, Young-Hee;Son, Yong-Hae;Oh, Yang-Hyo;Park, Yeong-Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • Purpose : Infection with Shiga-like toxin (SLT)-producing Escherichia coli, an emerging human pathogen found particularly in young children under 5 years of age, causes a spectrum of illnesses with high morbidity and mortality, ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome. Host mediators play an important role in the pathogenesis of SLT-I toxicity. The experiments described here were designed to investigate the effect of SLT-I on TNF-${\alpha}$ production and to understand the effect of TNF-${\alpha}$ on GB3 expression. We also further examine the relationship between the Gb3 level and the differential susceptibility of cells to the cytotoxic action of SLT-I. Methods : The effect of purified SLT-1 from E. coli O157 : H7 (ATCC 43890) on tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production in Raw264.7 cells was investigated. Many mediators regulate endothelial cell membrane expression of the glycolipid globotriaosyleramide (Gb3), which serves as the toxin receptor, suggesting that the host response to the toxin or other bacterial products may contribute to pathogenesis by regulating target cell sensitivity to the toxins. Therefore, the relationships between Gb3 expression and cytotoxicity against SLT-I on three types of cells were evaluated. Results : Detectable levels of TNF-${\alpha}$ were produced as early as six hours after induction and continued to increase during 48 hours by SLT-I. It was also found that Vero cells and dendritic cells (DC2.4 cells) expressed high levels of Gb3, 83% and 68%, respectively, and that Raw264.7 cells had a low level of Gb3 (29%) and appeared refractory to cytotoxicity against SLT-I. Vero cells and DC2.4 cells expressing high levels of Gb3 were highly susceptible to SLT-I. Furthermore, macrophages showed a resistance to SLT-I cytotoxicity, despite the fact that Gb3 expression was enhanced. Conclusion : These results strongly suggest that the expression of Gb3 is necessary but not sufficient to confer sensitivity of macrophages to SLT-I and further underpin the important role of SLT-I and its Gb3 receptors in the pathogenesis of E. coli O157 infection.