• Title/Summary/Keyword: Escherichia coli O157:H7

Search Result 373, Processing Time 0.026 seconds

Acid Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Adapted in Fruit Juices in Simulated Gastric Fluid (위합성용액에서 과일주스에 노출한 Non-O157 Shiga Toxin-Producing Escherichia coli의 산 저항성 평가)

  • Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.577-584
    • /
    • 2016
  • The objectives of this study were I) to compare the acid resistance (AR) of seven non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups, including O26, O45, O103, O111, O121, O145, and O157:H7 STEC isolated from various sources, in 400 mM acetic acid solution (AAS) at pH 3.2 and $30^{\circ}C$ for 25 min with or without glutamic acid and II) to determine strain survival upon exposure to simulated gastric fluid (SGF, pH 1.5) at $37^{\circ}C$ for 2 h after acid adaptation in apple, pineapple, orange, and strawberry juices at pH 3.8, $4^{\circ}C$ and $20^{\circ}C$. Results show that the O111 serogroup strains had the strongest AR (0.12 log reduction CFU/mL) which was very similar to that of O157:H7 STEC (P>0.05), compared to other serogroups in AAS without glutamic acid, whereas O26 serogroup strains showed the most sensitive AR. However, there was no significant (P>0.05) difference of AR among seven serogroups in AAS with glutamic acid. In the SGF study, 05-6545 (O45:H2), 08023 (O121:H19), and 03-4669 (O145:NM) strains adapted in fruit juices at $4^{\circ}C$ and $20^{\circ}C$ displayed enhanced survival with exposure to SGF for 60 min compared to 06E0218 (O157:H7) strains (P<0.05). In addition, 4 STEC strains adapted in pineapple juice at $4^{\circ}C$ showed enhanced survival with exposure to SGF for 60 min compared to those strains acid-adapted in the other fruit juices. Generally, adaptation at $4^{\circ}C$ in fruit juices resulted in significantly enhanced survival levels compared to acid-adapted at $20^{\circ}C$ and non-adapted conditions. The AR caused by adaptation in fruit juices at low temperature may thus increase survival of non-O157 STEC strain in acidic environments such as the gastrointestinal tract. These results suggest that more careful strategies should be provided to protect against risk of foodborne illness by non-O157 STEC.

Antimicrobial Activity of Chitooligosaccharides (Chitooligosaccharides의 항균성)

  • 박헌국
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.6
    • /
    • pp.579-584
    • /
    • 2001
  • Chitooligosaccharides were prepared by enzymatic hydrolyzing of crab shell chitosan. Low Molecular Meight chitooligosaccharides(LMW-chitooligosaccharides) , 64.3% of which was composed of trimer, tetramer, and pentamer, was obtained by hydrolyzing chitosan with the chitosanase originated Bacillus pumilus BN -262. High Molecular Meight chitooligosaccharides ( HMW-chitooligosaccharides ) , 49.3% of which was composed of chitooligosaccharides over heptamer, was obtained by hydrolyzing chitosan with the cellulase originated Trichoderma viride. Antimicrobial activity and colony forming inhibitory activity of chitooligosaccharides were tested. MIC of LMW-chitooligosaccharides against Bacillus cereus, Bacillus subtilis, Candida albicans, Escherichia coli, Escherichia coli O157 : H7, Lactobacillus plantarum, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus and Streptococcus mutans was 1.5%, 1.5% above 2.0%, 1.5%, 1.5%, below 0.5%, 2.0%, 1.5%, above 2.0%, 1.0%, 1.5% and 1.0% respectively. .

  • PDF

The Effects of Antibacterial Activity of Exopolysaccharide Isolated from Tibetan Mushroom Culture against Foodborne Pathogenic Bacteria: A Preliminary Study

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.68-77
    • /
    • 2021
  • This study aimed to evaluate the effects of antibacterial activity of Tibetan mushroom exopolysaccharide against foodborne pathogenic bacteria Staphylococcus aureus 305, Listeria monocytogenes ATCC19114, Escherichia coli O157:H7 ATCC42894 and Escherichia coli O55. The yield of exopolysaccharide isolated from Tibetan mushroom culture was 620 mg/L. The antibacterial activity of exopolysaccharide against foodborne pathogenic bacteria exhibited 15 mm and 12 mm clear zone against S. aureus 305 and L. monocytogenes ATCC 19114, respectively. However, no clear zone was observed against E. coli O157:H7 ATCC 42894 and E. coli O55. In conclusion, exopolysaccharide isolated from Tibetan mushroom culture have the antibacterial activity only against Gram-positive foodborne pathogenic bacteria.

Antimicrobial Activity of Korean Herbal Complex Extract and Clay Mineral Mixture against Escherichia coli O157:H7 (한약재 복합추출물과 점토 광물질 혼합제의 Escherichio coli O157:H7에 대한 항균효과)

  • Lee, Yeon-Ok;Jung, Won-Chul;Cha, Chun-Nam;Kim, Gon-Sup;Lee, Yeo-Eun;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • The present study was evaluated the antibacterial effect of the combination of Coptidis rhizoma, Lonicerae Flos, and Paeonia japonica (1:1:1) extracts (CLP1000). Also, the effectiveness of CLP1000, dioctahedral smectite (DHS), and the combination of CLP1000 and DHS (CLPS1000) against E. coli O157:H7 infection was studied using ICR female mice. During the incubation period, the dose of 10% and 20% CLP1000 were inhibited the growth of E. coli O157:H7 by 30% and 47%, respectively. For 7 days after single challenge with E. coli O157:H7, forty female ICR mice were divided into four experimental groups which were orally administered with saline, 10% CLP1000, 10% DHS, and 10% CLPS1000, respectively. On the 3rd day, the number of E. coli O157:H7 in mouse feces was significantly decreased by administration of CLP1000 (p < 0.05), DHS (p < 0.05) and CLPS1000 (p < 0.001). On the 7th day, CLP1000 (p < 0.05) and CLPS1000 p < 0.001) administration significantly decreased the number of E. coli O157:H7. According to the results of the present study, administration of CLPS1000 to mice can reduce the severity of E. coli O157:H7 infection. Also, it is suggested that CLPS100 represents a good candidate for the treatment of enteric infections in domestic animals.

Antibacterial Activity of Sodium Phytate and Sodium Phosphates Against Escherichia coli O157:H7 in Meats (식육에서 피틴산염과 인산염의 Escherichia coli O157:H7균에 대한 항균효과)

  • Hue, Jin-Joo;Li, Lan;Lee, Yea-Eun;Lee, Ki-Nam;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Yoo, Han-Sang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • The approval of use of certain food-grade phosphates as food additives in a wide variety of meat products greatly stimulated research on the applications of phosphates in foods. Although phosphates have never been classified as antimicrobial agents, a number of investigators have reported that phosphates have antimicrobial activities. Phytic acid is a natural plant inositol hexaphosphate constituting 1-5% of most cereals, nuts, legumes, oil seeds, pollen, and spores. In this study, we investigated antibacterial activities of sodium phytate(SPT), sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP) on Escherichia coli O157:H7 on tryptic soy broth and in beef, pork and chicken. In tryptic soy broth, SPT, SPP and STPP at the concentrations of 0.05, 0.1, and 0.5% effectively inhibited the growth of Escherichia coli O157:H7 in a concentration-dependent manner. The bactericidal activity of SPT was the stronger than that of SPP or STPP at the same concentrations. In addition, the antibacterial effects of SPT, SPP and STPP at the concentrations of 0.05, 0.1, 0.3, and 0.5% on Escherichia coli O157:H7 were also investigated in raw or cooked meats including beef, pork and chicken. SPT, SPP and STPP significantly inhibited the bacterial growth in a dose-dependant manner (p<0.05). The bactericidal effect of SPT was stronger than that of SPP or STPP. The addition of SPT, SPP and STPP in meats increased meat pHs. SPP and STPP also increased the levels of soluble orthophosphate in meats but STP did not. These results indicate that SPT is very effective for inhibition of bacterial growth and that can be used as a muscle food additive for increasing functions of meats.

Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates Escherichia coli O157:H7 and Salmonella Typhimurium Inoculated on Paprika

  • Kim, Hyun-Gyu;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.492-499
    • /
    • 2017
  • Combined treatment with gaseous and aqueous chlorine dioxide ($ClO_2$) was performed to improve the microbiological safety and quality of paprika. A single treatment of 50 ppmv $ClO_2$ gas for 30 min decreased the populations of Escherichia coli O157:H7 and Salmonella Typhimurium by 2.33 and 2.91 log CFU/g, respectively. In addition, a single treatment of aqueous $ClO_2$ (50 ppm) for 5 min decreased these populations by 1.86 and 1.37, respectively. The most dramatic effects were achieved by combined treatment of 50 ppm aqueous and gaseous $ClO_2$ for 30 min, which decreased populations of E. coli O157:H7 and S. Typhimurium by 4.11 and 3.61 log CFU/g, respectively. With regard to the qualities of paprika, no adverse effects were elicited by the combined treatment. Thus, combined treatment with aqueous and gaseous $ClO_2$ is a suitable approach that can be used to improve the microbial safety and quality of paprika.

Detection of Enterohemorrhagic Escherichia coli O157:H7 Strains Using Multiplex Polymerase Chain Reaction (Multiplex PCR을 이용한 장출혈성 대장균 O157:H7의 검출)

  • 엄용빈;김종배
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • A multiplex PCR method was designed by employing primers specific for the eaeA gene, conserved sequences of Shiga-like toxins (SLT-I.II), and the 60-MDa plasmid of enterohemorrhagic E. coli (EHEC) O157:H7 strain. A set of six synthetic oligonucleotide primers derived from sequences of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 were used in a multiplex PCR amplification procedure to detect these genes in the same enteric pathogens. In two enterohemorrhagic E. coli O157:H7 (ATCC 35150, ATCC 43894) reference strains, PCR products of 317bps (eaeA), 228bps (SLT-I.II), and 167bps (60-MDa plasmid) were successfully amplified simultaneously in a single reaction. However, the specific PCR products were not amplified in control strains of other enteric bacteria. The sensitivity of the multiplex PCR assay for detection of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 was found to be 2.5$\times$10$^{6}$ of bacteria in diarrheal stool to amplify all three bands. The multiplex PCR technology will allow large-scale screening of many clinical specimens or contaminated foods, and will be a very useful method for the detection of a wide range of microorganisms present in the environment, including EHEC O157:H7 in various types of specimens. The multiplex PCR assay has the potential to be used as a specific and rapid method for clinical diagnosis of disease caused by EHEC O157:H7.

  • PDF

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water (이산화염소수와 전해수를 이용한 식중독균의 살균효과)

  • Lee, Hye-Rin;Kim, Su-Jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.232-237
    • /
    • 2022
  • The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

Antimicrobial Activities of Viscous Substance from Chongkukjang Fermented with different bacillus spry. (청국장 발효 세균의 종류에 따른 청국장 정절물의 항 미생물 활성에 관한 연구)

  • 윤호경;최희선;허성호;홍정화
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.188-193
    • /
    • 2001
  • To evaluate antimicrobial activities of chongkukjang slime fermented by different strains, growth characteristics were compared using various standard microorganisms with addition of chongkykjang slime. Chonghkjang slime was prepared by fermenting cooked soybean after inoculating with Bacillus circulans K-1, Baciilus spp N-1 and Bacillus subtilis CH-1, respectively. Significant antimicrobial activity was observed by chongkukjang slime on gram positive bacteria (Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Micrococcus luteus), gram negative bacteria(Escherichia coli O157:H7, Salmonella Typhimurium, Pseudomonas fluorescens), and yeast (Pichia membranaefaciens, Saccharomyces cerevisiae, Candida albicans). In case of B. cereus growth inhibition of 80% was achieved by the addition of chongkukjang slime; on the contrary, to Escherichia coli O157:H7 only 20% inhibition was observed. Slime from Bacillus subtilis CH-1, in particular, inhibition of 40% toward bacteria and yeast, whereas slime from Bacillus circulans K-1, Bacillus spp N-1 showed only 20% inhibition.

  • PDF

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.