• Title/Summary/Keyword: Escape Light

Search Result 60, Processing Time 0.031 seconds

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Safe arm posture when using vertical rescue sack (수직 강하식 구조대 사용 시 안전한 팔 자세)

  • Jeon, Jai-In;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • This study is about the safe arm posture in case of emergency escape using the vertical dive rescue sack at the fire site. The experimental results are as follows. First, the arms extended upward contact with the endothelium and narrowing part of the rescue sack minimized the scratches did not occur. Second, the bent position with both arms open was subject to light abrasions of on the elbows due to friction between the elbows and the scapula and the endothelium. Third, in the posture where both arms were gathered in the chest, the body passed through the narrowing part and friction between the bag's narrowing part, All subjects had light abrasions on their elbows. Fourth, because the arms are lowered, the legs are extended to the width of the shoulders when descending, so that the back of the hand has friction with the narrowing part of the bag and the endothelial skin. Finally, posture with both arms below the front increased the volume of the front of the body, resulting in a slight back injury. As a future research task, it is necessary to study the proper posture of legs and the posture of landing on the ground.

Electromagnetic Field and the Poetry of Ezra Pound

  • Ryoo, Gi Taek
    • Journal of English Language & Literature
    • /
    • v.57 no.6
    • /
    • pp.939-958
    • /
    • 2011
  • Ezra Pound has an idea of poetry as a field of energy in which words interact with each other with kinetic energy. The energy field which Pound creates in his poem is analogous to the theory of electromagnetism developed by Michael Faraday and James Maxwell, who look upon the space around magnets, electric charges and currents not as empty but as filled with energy and activity. Pound argues that "words are charged with force like electricity," demonstrating that words charged with their own images or energies of positive or negative valence interact one another. This idea is similar to Faraday's concept of "line of force" which he used to represent the disposition of electric and magnetic forces in space. Pound's concept of "image" as an "intellectual and emotional complex in an instant" is remarkably consonant with the confluence of electric and magnetic fields that are coupled to each other as they travel through space in the form of electromagnetic waves. The instant profusion of conception and perception, much like that of electric and magnetic fields, enables Pound to move beyond the sequential and linear hierarchy in time and space. Particularly, Maxwell's stunning discovery that the electromagnetic waves propagate in space at 'the speed of light' has allowed Pound a relativistic sense of escape from the limitations of Newtonian absolute time and space. Pound's poetry transcends any geographical space and sequential time by rendering and juxtaposing images simultaneously. Pound was fully aware of light and electricity fundamental to what he called his world "the electric world." Pound's experiments in Imagism and Vorticism can be considered an attempt to rediscover a place for poetry in the modern world of science and technology. Almost all the appliances that we think of today as modern were laid down in the closing decades of the 19th century and the first decades of the 20th century, in response to the availability of electromagnetic energy. This paper explores how Pound responded to the age of modern technology and science, examining his conception of "image" through his many analogies and similes drawn from electromagnetism. Pound's imagist poetics and poetry come to embody, not only the characteristics of the electric age in the early twentieth century, but the principles of electromagnetism the electric age is based upon.

Alcohol Impairs learning of T-maze Task but Not Active Avoidance Task in Zebrafish

  • Yang, Sunggu;Kim, Wansik;Choi, Byung-Hee;Koh, Hae-Young;Lee, Chang-Joong
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.303-307
    • /
    • 2003
  • The aim of this study is to investigate whether alcohol alters learning and memory processes pertaining to emotional and spatial factors using the active avoidance and T-maze task in zebrafish. In the active avoidance task, zebrafish were trained to escape from one compartment to another to avoid electric shocks (unconditioned stimulus) following a conditioned light signal. Acquisition of active avoidance task appeared to be normal in zebrafish that were treated with 1% alcohol for 30 min for 17 days until the end of the behavioral test, and retention ability of learned behavior, tested 2 days later, was the same as control group. In the T-maze task, the time to find a reservoir was compared. While the latency was similar during the 1 st training session between control and alcohol-treated zebrafish, it was significantly longer in alcohol-treated zebrafish during retention test 24 h later. Furthermore, when alcohol was treated 30 min after 2nd session without prior treatment, zebrafish demonstrated similar retention ability compared to control. These results suggest that chronic alcohol treatment alters spatial learning of zebrafish, but not emotional learning.

Characteristics of the Uses and Exterior Design of Balconies in Urban Housing - Focusing on the Balconies from the Ancient Times to the 19th Century with a Culture-historical Perspective - (도시주거의 발코니에서 나타나는 내부이용 및 외부표현 특성 - 고대부터 19세기 말까지의 동.서양 주거문화사적(文化史的) 고찰을 중심으로 -)

  • Jee, Soo-In
    • Journal of the Korean housing association
    • /
    • v.21 no.2
    • /
    • pp.133-144
    • /
    • 2010
  • The purpose of this study is to analyze the uses and exterior design of the balconies in urban housing from the ancient times to the 19th century. In doing so, the paper seeks to investigate the cultural identity of the balcony in urban housing. The results are as follow. First, in the urban housing the balcony space were made for protection from the heat, light and ventilation; gardening; views toward the streets, city, waterside, inner court, domain for men; breathing french air; watching ceremony, festivals and events; simple houseworks like drying, carpet cleaning and hair coloring; lever installation and fire escape. Second, as part of exterior design the typical projecting characteristic of the balconies was emphasized and they became an impotent decorative element. The monotonous facade changed to a lively design with a rhythmical sense. On the facade the effects of horizontal movement, symmetry or asymmetry from the main entrance, and the center-projection (rialto) were created. In the urban housing the balconies were used for cultural activities which supplement and enlarge the function of the interior space, and moreover the rich effects of the facade contributed to the creation of attractive urban landscape.

Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.

Simulation of the virtual mackerel behavior to the trawl gear (트롤 어구에 대한 가상 고등어의 반응 행동 시뮬레이션)

  • Lee, Gun-Ho;Lee, Chun-Woo;Kim, Young-Bong;He, Pingguo;Choe, Moo-Youl
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • This paper focuses on the mackerel's visual ability and swimming capability, and aims to describe the behavior in capture and escape process by trawl. The visual sensory systems and reaction behavior based locomotory capability were analyzed and simulated. The ability of fish to see an object depends on the light intensity and the contrast and size of the object. Swimming endurance of the fish is dependent on the swimming speed and the size of the fish. Swimming speeds of the fish are simulated 3 types of the burst speed, the prolonged speed and the sustained speed according to the time they can maintain to swim. The herding and avoiding is typical reaction of the fish to the stimuli of trawl gear in the capture process. These basic behavior patterns of the virtual mackerel to the gear are simulated. This simulation will be helpful to understand the fishing processes and make high selectivity of fishing.

Physiological Response of Panax ginseng to Temperature I. Old experience, distribution, germination, photosynthesis and respiration (인삼의 온도에 대한 생리반응 . 옛경험, 분석, 발아, 광합성, 흡수)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.156-167
    • /
    • 1979
  • Physiological characteristics of Panax ginseng were reviewed in relation to temperature. According to the old literatures and records of cultivator's experiences it was elucidated that ginseng plants require light but hate high temperature and that the cultural methods were developed to content two characteristics in contradiction. Low temperature (cool climate) during growing season seems (or ginseng to be essential and to escape from the extreme coldness according to air and soil temperature of natural habitat and cultivated area. Optimum temperature of dehiscence (15∼below 20$^{\circ}C$) is a little higher than that of germination (10∼15$^{\circ}C$). Optimum temperature for growing of new buds (18∼20$^{\circ}C$) is similar to that for growing after emergence (17∼21$^{\circ}C$). Dormancy of both matured embryo and new buds is broken at the same temperature (2∼3$^{\circ}C$). It seems reasonable that optimum temperature of photosynthesis (22$^{\circ}C$) is similar to that of growth. Respiration quotients of various organs or of whole plant ranged from 1.7 to 3 incrased with high temperature. Respiratory consumption and oxygen limitation seem to be potential factors to induce decay during dehiscence and germination of seeds and root rot in fields. Research on organ differentiation. photosynthesis, respiration and growth with age is needed for the development of cultivation methods.

  • PDF

Impact deformation of Feldspar in Achondrite: NWA 2727, NWA 3117, NWA 856 Meteorite

  • LEE, Jaeyong;FAGAN, Timothy J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2018
  • We investigated shock history of three achondrite meteorites: NWA 3117, a howardite from asteroid Vesta, NWA 2727, a breccia from the Moon, and NWA 856, a shergottite from Mars. Shock histories were evaluated from deformation of plagioclase feldspars. Feldspar grains were classified based on observations in cross-polarized light as undulatory, mosaic, mosaic-recrystallized or maskelynite. This sequence represents increasing deformation of original feldspar crystals. Undulatory crystals have wavy extinction, mosaic crystals have patchy extinction, and mosaic-recrystallized grains appear as if they were originally coarse-grained and have recrystallized to mosaics of small equant crystals. Maskelynite grains are isotropic, indicating transformation to glass. Based on feldspar deformation, the degrees of impact processing are NWA 856 > NWA 3117 > NWA 2727. The high deformation of NWA 856 is expected because this sample is from Mars, which is a large parent body and requires a powerful impact to accelerate a rock to escape velocity. In contrast, the parent body of NWA 3117 (Vesta) is smaller than that of NWA 2727 (the Moon), yet NWA 3117 appears more highly deformed than NWA 2727. One possible explanation is that NWA 2727 is from a relatively young part of the Moon, which has not been exposed to impacts as long as the surface of Vesta.

  • PDF

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine- II Analysis of escaping behaviour of anchovy in relation to underwater light and towing flow velocity (기선권현망어업의 어구개량과 자동화조업시스템 개발- II 수중광 및 예망유속과 멸치의 도피반응 행동 분석)

  • 김용해;장충식;안영수;김형석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • Escape behaviour of the anchovy (Engralius japonica, total length 4-7cm) at the inside wing net and bag net in the anchovy boat seine was observed by underwater video camera in order to clarify the relationship between visual stimulus of the gear or relative water flow inside gear and reacting behaviour. The vertical attenuation coefficient of underwater illuminance in the offshore of Keoje island and Tongyoung was ranged from 0.24 to 1.03 and it could be affect visual range and visual contrast of the fishing gear. The relative water flow at the joint part between inside wing and bagnet while towing was 1.5 times higher than at the middle part of inside wing or fore part of bag net, but it was estimated under than maximum swimming speed of 4-7 cm anchovy. The mean escaping number of anchovy from end part of inside wing of 30 cm mesh to out side for a minute within visual range of video camera was 455 and anchovy swimming forward from bag net through flapper was 308. These results revealed anchovy could escape as voluntary response in spite of higher visual stimulus or higher water flow.

  • PDF